
CHAPTER 6

Objects

The main ideas for this chapter are:
objects and classes: objects are values that bundle together some

data (attributes) and some functions (methods). Classes are
values that describe how to create objects.

attributes and methods: Both objects and classes can contain
attributes and methods. An attribute maps a name to a value
and a method maps a name to a function.

inheritance: One class may inherit from one or more other
classes, thereby gaining access to the methods in the inher-
ited classes.

6.1. Syntax of P3

The concrete syntax of P3 is shown in Figure 1 and the abstract
syntax (the Python AST classes) is shown in Figure 2.

expression ::= expression "." identifier

expression_list ::= expression ("," expression)* [","]

statement ::= "class" name ["(" expression_list ")"] ":" suite

| "if" expression ":" suite "else" ":" suite

| "while" expression ":" suite

target ::= expression "." identifier

FIGURE 1. Concrete syntax for the P3 subset of Python.
(In addition to that of P2.)

6.2. Semantics of P3

This week we add a statement for creating classes. For example,
the following statement creates a class named C.

>>> class C:

... x = 42

Assignments in the body of a class create class attributes. The above
code creates a class C with an attribute x. Class attributes may be
accessed using the dot operator. For example:

71

72 6. OBJECTS

class AssAttr(Node):

def __init__(self, expr, attrname, flags):

self.expr = expr

self.attrname = attrname

self.flags = flags # ignore this

class Class(Node):

def __init__(self, name, bases, doc, code):

self.name = name

self.bases = bases

self.doc = doc # ignore this
self.code = code

class Getattr(Node):

def __init__(self, expr, attrname):

self.expr = expr

self.attrname = attrname

class If(Node):

def __init__(self, tests, else_):

self.tests = tests

self.else_ = else_

class While(Node):

def __init__(self, test, body, else_):

self.test = test

self.body = body

self.else_ = else_

FIGURE 2. The Python classes for P3 ASTs.

>>> print C.x

42

The body of a class may include arbitrary statements, including state-
ments that perform I/O. These statements are executed as the class
is created.

>>> class C:

... print 4 * 10 + 2

42

If a class attribute is a function, then accessing the attribute pro-
duces an unbound method.

>>> class C:

f = lambda o, dx: o.x + dx

6.2. SEMANTICS OF P3 73

>>> C.f

<unbound method C.<lambda>>

An unbound method is like a function except that the first argument
must be an instance of the class from which the method came. We’ll
talk more about instances and methods later.

Classes are first-class objects, and may be assigned to variables,
returned from functions, etc. The following if expression evaluates
to the class C, so the attribute reference evaluates to 42.

>>> class C:

... x = 42

>>> class D:

... x = 0

>>> print (C if True else D).x

42

6.2.1. Inheritance. A class may inherit from other classes. In the
following, class C inherits from classes A and B. When you reference
an attribute in a derived class, if the attribute is not in the derived
class, then the base classes are searched in depth-first, left-to-right
order. In the following, C.x resolves to A.x (and not B.x) whereas
C.y resolves to B.y.

>>> class A:

... x = 4

>>> class B:

... x = 0

... y = 2

>>> class C(A, B):

... z = 3

>>> print C.x * 10 + C.y

42

6.2.2. Objects. An object (or instance) is created by calling a class
as if it were a function.

o = C()

If the class has an attribute named __init__, then once the object is
allocated, the __init__ function is called with the object as it’s first
argument. If there were arguments in the call to the class, then these
arguments are also passed to the __init__ function.

74 6. OBJECTS

>>> class C:

... def __init__(o, n):

... print n

>>> o = C(42)

42

An instance may have associated data attributes, which are cre-
ated by assigning to the attribute. Data attributes are accessed with
the dot operator.

>>> o.x = 7

>>> print o.x

7

Different objects may have different values for the same attribute.

>>> p = C(42)

42

>>> p.x = 10

>>> print o.x, p.x

7, 10

Objects live on the heap and may be aliased (like lists and dictionar-
ies).

>>> print o is p

False

>>> q = o

>>> print q is o

True

>>> q.x = 1

>>> print o.x

1

A data attribute may be a function (because functions are first class).
Such a data attribute is not a method (the object is not passed as the
first parameter).

>>> o.f = lambda n: n * n

>>> o.f(3)

9

When the dot operator is applied to an object but the specified at-
tribute is not present in the object itself, the class of the object is
searched followed by the base classes in depth-first, left-to-right or-
der.

>>> class C:

... y = 3

6.2. SEMANTICS OF P3 75

>>> o = C()

>>> print o.y

3

If an attribute reference resolves to a function in the class or base
class of an object, then the result is a bound method.

>>> class C:

... def move(o,dx):

... o.x = o.x + dx

>>> o = C()

>>> o.move

<bound method C.move of <__main__.C instance at 0x11d3fd0>>

A bound method ties together the receiver object (o in the above ex-
ample) with the function from the class (move). A bound method can
be called like a function, where the receiver object is implicitly the
first argument and the arguments provided at the call are the rest of
the arguments.

>>> o.x = 40

>>> o.move(2)

>>> print o.x

42

Just like everything else in Python, bound methods are first class and
may be stored in lists, passed as arguments to functions, etc.

>>> mlist = [o.move,o.move,o.move]

>>> i = 0

>>> while i != 3:

... mlist[i](1)

... i = i + 1

>>> print o.x

45

You might wonder how the Python implementation knows whether
to make a normal function call or whether to perform a method call
(which requires passing the receiver object as the first argument).
The answer is that the implementation checks the type tag in the
operator to see whether it is a function or bound method and then
treats the two differently.

EXERCISE 6.1. Read:

(1) Section 9 of the Python Tutorial
(2) Python Language Reference, Section 3.2

http://docs.python.org/tut/node11.html
http://docs.python.org/ref/types.html

76 6. OBJECTS

Select
Instructions

Lex & Parse Python AST

Python File

x86 Assembly File

Flat Explicit
Python AST

Flatten
Expressions

Print x86

x86 IR
+ If + While

Explicate
Operations

Allocate
Registers

Explicit
Python AST

x86 IR
+ If + While

Remove Structured
Control Flow

x86 IR

Heapify
Variables

Closure
Conversion

Explicit
Python AST

Explicit
Python AST

Declassify Python AST

FIGURE 3. Structure of the compiler.

6.2.3. If and While Statements. This chapter we also add if and
while statements. For the if statement, you don’t need to support
elif and you can assume that every if has an else. For while state-
ments, you don’t need to support the else clause.

One of the more interesting aspects of extending your compiler
to handle While statements is that you’ll need to figure out how to
propagate the live-variable information through While statements in
the register allocation phase.

6.3. Compiling Classes and Objects

Figure 3 shows the structure of the compiler with the addition
of classes and objects. We insert a new pass at the beginning of the
compiler that lowers classes and objects to more primitive operations
and then we update the rest of the compiler to handle these new
primitives.

In addition to the new passes and primitives, the entities intro-
duced this week are all first-class, so the big pyobj union in runtime.h

has been extended.
class: The runtime representation for a class stores a list of

base classes and a dictionary of attributes.

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

6.3. COMPILING CLASSES AND OBJECTS 77

object: The runtime representation for an object stores its class
and a dictionary of attributes.

unbound method: The runtime representation of an unbound
method contains the underlying function and the class ob-
ject on which the attribute access was applied that created
the unbound method.

bound method: The runtime representation for a bound method
includes the function and the receiver object.

The following are the new functions in runtime.h for working
with classes, objects, bound methods, and unbound methods.

/∗ bases should be a list of classes ∗/
big_pyobj* create_class(pyobj bases);

big_pyobj* create_object(pyobj cl);

/∗ inherits returns true if class c1 inherits from class c2 ∗/
int inherits(pyobj c1, pyobj c2);

/∗ get class returns the class from an object or unbound method ∗/
big_pyobj* get_class(pyobj o);

/∗ get receiver returns the receiver from inside a bound method ∗/
big_pyobj* get_receiver(pyobj o);

/∗ get function returns the function from inside a method ∗/
big_pyobj* get_function(pyobj o);

int has_attr(pyobj o, char* attr);

pyobj get_attr(pyobj c, char* attr);

pyobj set_attr(pyobj obj, char* attr, pyobj val);

6.3.1. Compiling empty class definitions and class attributes.
Compiling full class definitions is somewhat involved, so I first rec-
ommend compiling empty class definitions. We begin with class def-
initions that have a trivial body.

>>> class C:

... 0

The class definition should be compiled into an assignment to a vari-
able named C. The right-hand-side of the assignment should be an
expression that allocates a class object with an empty hashtable for
attributes and an empty list of base classes. So, in general, the trans-
formation should be

class C:
0

=⇒
C = create_class()

where create class is a new C function in runtime.h.

78 6. OBJECTS

While a class with no attributes is useless in C++, in Python you
can add attributes to the class after the fact. For example, we can
proceed to write

>>> C.x = 3

>>> print C.x

3

An assignment such as C.x = 3 (the AssAttr node) should be trans-
formed into a call to set attr. In this example, we would have
set attr(C, "x", 3). Note that this requires adding support for
string constants to your intermediate language.

The attribute access C.x (the Getattr node) in the print state-
ment should be translated into a call to the get attr function in
runtime.h. In this case, we would have get attr(C, "x").

6.3.2. Compiling class definitions. A class body may contain an
arbitrary sequence of statements, and some of those statements (as-
signments and function definitions) add attributes to the class object.
Consider the following example.

class C:

x = 3

if True:

def foo(self, y):

w = 3

return y + w

z = x + 9

else:

def foo(self, y):

return self.x + y

print ’hello world!\n’

This class definition creates a class object with three attributes: x,
foo, and z, and prints out hello world!.

The main trick to compiling the body of a class is to replace as-
signments and function definitions so that they refer to attributes in
the class. The replacement needs to go inside compound statements
such as If and While, but not inside function bodies, as those assign-
ments correspond to local variables of the function. One can imagine
transforming the above code to something like the following:

class C:

pass

C.x = 3

if True:

def __foo(self, y):

6.3. COMPILING CLASSES AND OBJECTS 79

w = 3

return y + w

C.foo = __foo

C.z = C.x + 9

else:

def __foo(self, y):

return self.x + y

C.foo = __foo

print ’hello world!\n’

Once the code is transformed as above, the rest of the compilation
passes can be applied to it as usual.

In general, the translation for class definitions is as follows.

class C(B1, . . . , Bn):

body
=⇒
tmp = create_class([B1, . . . , Bn])

newbody
C = tmp

Instead of assigning the class to variable C, we instead assign it to a
unique temporary variable and then assign it to C after the newbody .
The reason for this is that the scope of the class name C does not
include the body of the class.

The body is translated to newbody by recursively applying the fol-
lowing transformations. You will need to know which variables are
assigned to (which variables are class attributes), so before trans-
forming the body , first find all the variables assigned-to in the body
(but not assigned to inside functions in the body).

The translation for assignments is:

x = e
=⇒
set_attr(tmp, "x", e′)

where e′ is the recursively processed version of e.
The translation for variables is somewhat subtle. If the variable

is one of the variables assigned somewhere in the body of this class,
and if the variable is also in scope immediately outside the class,
then translate the variable into a conditional expression that either
does an attribute access or a variable access depending on whether
the attribute is actually present in the class value.

x
=⇒
get_attr(tmp, "x") if has_attr(tmp, "x") else x

80 6. OBJECTS

If the variable is assigned in the body of this class but is not in scope
outside the class, then just translate the variable to an attribute ac-
cess.
x
=⇒
get_attr(tmp, "x")

If the variable is not assigned in the body of this class, then leave it
as a variable.
x
=⇒
x

The translation for function definitions is:
def f(e1,. . .,en):

body
=⇒
def f_tmp(e1,. . .,en):

body # the body is unchanged, class attributes are not in scope here
set_attr(tmp, "f", f_tmp)

6.3.3. Compiling objects. The first step in compiling objects is
to implement object construction, which in Python is provided by
invoking a class as if it were a function. For example, the following
creates an instance of the C class.

C()

In the AST, this is just represented as a function call (CallFunc) node.
Furthermore, in general, at the call site you won’t know at compile-
time that the operator is a class object. For example, the following
program might create an instance of class C or it might call the func-
tion foo.

def foo():

print ’hello world\n’

(C if input() else foo)()

This can be handled with a small change to how you compile func-
tion calls. You will need to add a conditional expression that checks
whether the operator is a class object or a function. If it is a class ob-
ject, you need to allocate an instance of the class. If the class defines
an __init__ method, the method should be called immediately after
the object is allocated. If the operator is not a class, then perform a
function call.

6.3. COMPILING CLASSES AND OBJECTS 81

In the following we describe the translation of function calls. The
Python IfExp is normally written as e1 if e0 else e2 where e0 is the
condition, e1 is evaluated if e0 is true, and e2 is evaluated if e0 is false.
I’ll instead use the following textual representation:

if e0 then e1 else e2

In general, function calls can now be compiled like this:

e0(e1,. . .,en)
=⇒
let f = e0 in

let a1 = e1 in
...

let an = en in

if is_class(f) then

let o = create_object(f) in

if has_attr(f, ’__init__’) then

let ini = get_function(get_attr(f, ’__init__’)) in

let _ = ini(o, a1,. . .,an) in

o
else o

else

f(a1,. . .,an) # normal function call

The next step is to add support for creating and accessing at-
tributes of an object. Consider the following example.

o = C()

o.w = 42

print o.w

print o.x # attribute from the class C

An assignment to an attribute should be translated to a call to
set attr and accessing an attribute should be translated to a call to
get attr.

6.3.4. Compiling bound and unbound method calls. A call to
a bound or unbound method also shows up as a function call node
(CallFunc) in the AST, so we now have four things that can hap-
pen at a function call (we already had object construction and nor-
mal function calls). To handle bound and unbound methods, we
just need to add more conditions to check whether the operator is a
bound or unbound method. In the case of an unbound method, you
should call the underlying function from inside the method. In the
case of a bound method, you call the underlying function, passing

Bor-Yuh Evan Chang

82 6. OBJECTS

the receiver object (obtained from inside the bound method) as the
first argument followed by the normal arguments. The suggested
translation for function calls is given below.
e0(e1,. . .,en)
=⇒
let f = e0 in

let a1 = e1 in
...

let an = en in

if is_class(f) then

let o = create_object(f) in

if has_attr(f, ’__init__’) then

let ini = get_function(get_attr(f, ’__init__’)) in

let _ = ini(o, a1,. . .,an) in

o
else o

else

if is_bound_method(f) then

get_function(f)(get_receiver(f), a1,. . .,an)
else

if is_unbound_method(f) then

get_function(f)(a1,. . .,an)
else

f(a1,. . .,an) # normal function call

EXERCISE 6.2. Extend your compiler to handle P3. You do not
need to implement operator overloading for objects or any of the
special attributes or methods such as __dict__.

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Appendix

6.4. x86 Instruction Reference

Table 1 lists some x86 instructions and what they do. Address
offsets are given in bytes. The instruction arguments A,B,C can be
immediate constants (such as $4), registers (such as %eax), or mem-
ory references (such as −4(%ebp)). Most x86 instructions only allow
at most one memory reference per instruction. Other operands must
be immediates or registers.

83

84 APPENDIX

Instruction Operation
addl A, B A+B → B
call L Pushes the return address and jumps to label L
call *A Calls the function at the address A.
cmpl A, B compare A and B and set flag
je L If the flag is set to “equal”, jump to label L
jmp L Jump to label L
leave ebp→ esp; popl %ebp

movl A, B A→ B
movzbl A, B A→ B

where A is a single-byte register (e.g., al or cl), B is a four-byte register,
and the extra bytes of B are set to zero

negl A −A→ A
notl A ∼ A→ A (bitwise complement)
orl A, B A|B → B (bitwise-or)
andl A, B A&B → B (bitwise-and)
popl A ∗esp→ A; esp + 4→ esp

pushl A esp− 4→ esp;A→ ∗esp
ret Pops the return address and jumps to it
sall A, B B << A→ B (where A is a constant)
sarl A, B B >> A→ B (where A is a constant)
sete A If the flag is set to “equal”, then 1→ A, else 0→ A.

A must be a single byte register (e.g., al or cl).
setne A If the flag is set to “not equal”, then 1→ A, else 0→ A.

A must be a single byte register (e.g., al or cl).
subl A, B B − A→ B

TABLE 1. Some x86 instructions. We write A → B to
mean that the value of A is written into location B.

Bibliography

[1] V. K. Balakrishnan. Introductory Discrete Mathematics. Dover Publications, In-
corporated, 1996.

[2] D. Beazley. PLY (Python Lex-Yacc). http://www.dabeaz.com/ply/.
[3] D. Brélaz. New methods to color the vertices of a graph. Commun. ACM,

22(4):251–256, 1979.
[4] P. Briggs. Register Allocation via Graph Coloring. PhD thesis, Rice University,

1992.
[5] G. J. Chaitin. Register allocation & spilling via graph coloring. In SIGPLAN

’82: Proceedings of the 1982 SIGPLAN Symposium on Compiler Construction,
pages 98–105. ACM Press, 1982.

[6] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[7] A. H. Gebremedhin. Parallel Graph Coloring. PhD thesis, University of Bergen,
1999.

[8] S. Hack and G. Goos. Optimal register allocation for ssa-form programs in
polynomial time. Information Processing Letters, 98(4):150 – 155, 2006.

[9] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 1: Ba-
sic Architecture, November 2006.

[10] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 2A:
Instruction Set Reference, A-M, November 2006.

[11] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 2B:
Instruction Set Reference, N-Z, November 2006.

[12] S. C. Johnson. Yacc: Yet another compiler-compiler. In UNIX Programmer’s
Manual, volume 2, pages 353–387. Holt, Rinehart, and Winston, 1979.

[13] B. W. Kernighan and D. M. Ritchie. The C programming language. Prentice Hall
Press, Upper Saddle River, NJ, USA, 1988.

[14] M. E. Lesk and E. Schmidt. Lex - a lexical analyzer generator. Technical report,
Bell Laboratories, July 1975.

[15] H. A. Omari, K. E. nbsp;Sabri Hussein A. Omari, K. E. nbsp;Sabri Hussein
A. Omari, K. E. nbsp;Sabri Hussein A. Omari, and K. E. Sabri. New graph
coloring algorithms. Journal of Mathematics and Statistics, 2(4), 2006.

[16] J. Palsberg. Register allocation via coloring of chordal graphs. In CATS ’07:
Proceedings of the thirteenth Australasian symposium on Theory of computing,
pages 3–3, Darlinghurst, Australia, Australia, 2007. Australian Computer So-
ciety, Inc.

[17] K. H. Rosen. Discrete Mathematics and Its Applications. McGraw-Hill Higher
Education, 2002.

85

http://www.dabeaz.com/ply/

86 BIBLIOGRAPHY

[18] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordal-
ity of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic
hypergraphs. SIAM Journal on Computing, 13(3):566–579, 1984.

[19] G. van Rossum. Python Library Reference. Python Software Foundation, 2.5
edition, September 2006.

[20] G. van Rossum. Python Reference Manual. Python Software Foundation, 2.5
edition, September 2006.

[21] G. van Rossum. Python Tutorial. Python Software Foundation, 2.5 edition,
September 2006.

[22] O. Waddell and R. K. Dybig. Fast and effective procedure inlining. In Proceed-
ings of the 4th International Symposium on Static Analysis, SAS ’97, pages 35–52,
London, UK, 1997. Springer-Verlag.

	Chapter 1. Integers and variables
	1.1. ASTs and the P0 subset of Python
	1.2. Understand the meaning of P0
	1.3. Write recursive functions
	1.4. Learn the x86 assembly language
	1.5. Flatten expressions
	1.6. Select instructions

	Chapter 2. Parsing
	2.1. Lexical analysis
	2.2. Background on CFGs and the P0 grammar.
	2.3. Generating parsers with PLY
	2.4. The LALR(1) algorithm
	2.4.1. Parse table generation
	2.4.2. Resolving conflicts with precedence declarations

	Chapter 3. Register allocation
	3.1. Liveness analysis
	3.2. Building the interference graph
	3.3. Color the interference graph by playing Sudoku
	3.4. Generate spill code
	3.5. Assign homes and remove trivial moves
	3.6. Read more about register allocation

	Chapter 4. Data types and polymorphism
	4.1. Syntax of P1
	4.2. Semantics of P1
	4.3. New Python AST classes
	4.4. Compiling polymorphism
	4.5. The explicate pass
	4.6. Type checking the explicit AST
	4.7. Update expression flattening
	4.8. Update instruction selection
	4.9. Update register allocation
	4.10. Removing structured control flow
	4.11. Updates to print x86

	Chapter 5. Functions
	5.1. Syntax of P2
	5.2. Semantics of P2
	5.3. Overview of closure conversion
	5.4. Overview of heapifying variables
	5.4.1. Discussion

	5.5. Compiler implementation
	5.5.1. The Uniquify Variables Pass
	5.5.2. The Explicate Operations Pass
	5.5.3. The Heapify Variables Pass
	5.5.4. The Closure Conversion Pass
	5.5.5. The Flatten Expressions Pass
	5.5.6. The Select Instructions Pass
	5.5.7. The Register Allocation Pass
	5.5.8. The Print x86 Pass

	Chapter 6. Objects
	6.1. Syntax of P3
	6.2. Semantics of P3
	6.2.1. Inheritance
	6.2.2. Objects
	6.2.3. If and While Statements

	6.3. Compiling Classes and Objects
	6.3.1. Compiling empty class definitions and class attributes
	6.3.2. Compiling class definitions
	6.3.3. Compiling objects
	6.3.4. Compiling bound and unbound method calls

	Appendix
	6.4. x86 Instruction Reference

	Bibliography

