
CHAPTER 5

Functions

The main ideas in this chapter are:
first-class functions: functions are values that can be passed

as arguments to other functions, returned from functions,
stored in lists and dictionaries, assigned to variables, etc.

lexical scoping of variables: scopes separate variables with the
same name; lexical scoping dictates that a variable reference
is resolved by looking at its lexical environment.

5.1. Syntax of P2

We introduce two constructs for creating functions: the def state-
ment and the lambda expression. We also add an expression for call-
ing a function with some arguments. To keep things manageable, we
leave out function calls with keyword arguments. The concrete syn-
tax of the P2 subset of Python is shown in Figure 1. Figure 2 shows
the additional Python classes for the P2 AST.

expression ::= expression "(" expr_list ")"

| "lambda" id_list ":" expression

id_list ::= ε | identifier | identifier "," id_list

simple_statement ::= "return" expression

statement ::= simple_statement

| compound_stmt

compound_stmt ::= "def" identifier "(" id_list ")" ":" suite

suite ::= "\n" INDENT statement+ DEDENT

module ::= statement+

FIGURE 1. Concrete syntax for the P2 subset of Python.
(In addition to that of P1.)

5.2. Semantics of P2

Functions provide an important mechanism for reusing chunks
of code. If there are several places in a program that compute the
same thing, then the common code can be placed in a function and

57

58 5. FUNCTIONS

class CallFunc(Node):

def __init__(self, node, args):

self.node = node

self.args = args

class Function(Node):

def __init__(self, decorators, name, argnames, defaults, \

flags, doc, code):

self.decorators = decorators # ignore
self.name = name

self.argnames = argnames

self.defaults = defaults # ignore
self.flags = flags # ignore
self.doc = doc # ignore
self.code = code

class Lambda(Node):

def __init__(self, argnames, defaults, flags, code):

self.argnames = argnames

self.defaults = defaults # ignore
self.flags = flags # ignore
self.code = code

class Return(Node):

def __init__(self, value):

self.value = value

FIGURE 2. The Python classes for P2 ASTs.

then called from many locations. The example below defines and
calls a function. The def statement creates a function and gives it a
name.

>>> def sum(l, i, n):

... return l[i] + sum(l, i + 1, n) if i != n \

... else 0

...

>>> print sum([1,2,3], 0, 3)

6

>>> print sum([4,5,6], 0, 3)

15

Functions are first class, which means they are treated just like
other values: they may be passed as arguments to other functions,
returned from functions, stored within lists, etc.. For example, the
map function defined below has a parameter f that is applied to every
element of the list l.

>>> def map(f, l, i, n):

... return [f(l[i])] + map(f, l, i + 1, n) if i != n else []

5.2. SEMANTICS OF P2 59

Suppose we wish to square every element in an array. We can define
a square function and then use map as follows.

>>> def square(x):

... return x * x

...

>>> print map(square, [1,2,3], 0, 3)

[1, 4, 9]

The lambda expression creates a function, but does not give it a
name. Anonymous functions are handy in situations where you only
use the function in one place. For example, the following code uses a
lambda expression to tell the map function to add one to each element
of the list.

>> print map(lambda x: x + 1, [1,2,3], 0, 3)

[2, 3, 4]

Functions may be nested within one another as a consequence of
how the grammar is defined in Figure 1. Any statement may appear
in the body of a def and any expression may appear in the body of
a lambda, and functions may be created with statements or expres-
sions. Figure 3 shows an example where one function is defined
inside another function.

>>> def f(x):

... y = 4

... return lambda z: x + y + z

...

>>> f1 = f(1)

>>> print f1(3)

8

FIGURE 3. An example of a function nested inside an-
other function.

A function may refer to parameters and variables in the surrounding
scopes. In the above example, the lambda refers to the x parameter
and the y local variable of the enclosing function f.

One of the trickier aspects of functions in Python is their inter-
action with variables. A function definition introduces a new scope.
A variable assignment within a function also declares that variable
within the function’s scope. So, for example, in the following code,
the scope of the variable a is the body of function f and not the global
scope.

60 5. FUNCTIONS

>>> def f():

... a = 2

... return a

>>> f()

2

>>> a

Traceback (most recent call last):

File "<stdin>", line 1, in ?

NameError: name ’a’ is not defined

Python’s rules about variables can be somewhat confusing when
a variable is assigned in a function and has the same name as a vari-
able that is assigned outside of the function. For example, in the
following code the assignment a = 2 does not affect the variable a

in the global scope but instead introduces a new variable within the
function g.

>>> a = 3

>>> def g():

... a = 2

... return a

>>> g()

2

>>> a

3

An assignment to a variable anywhere within the function body
introduces the variable into the scope of the entire body. So, for ex-
ample, a reference to a variable before it is assigned will cause an er-
ror (even if there is a variable with the same name in an outer scope).

>>> a = 3

>>> def h():

... b = a + 2

... a = 1

... return b + a

>>> h()

Traceback (most recent call last):

File "<stdin>", line 1, in ?

File "<stdin>", line 2, in h

UnboundLocalError: local variable ’a’ referenced before

assignment

EXERCISE 5.1. Write five programs in the P2 subset of Python that
help you understand the language. Look for corner cases or unusual
aspects of the language to test in your programs.

5.3. OVERVIEW OF CLOSURE CONVERSION 61

5.3. Overview of closure conversion

The major challenge in compiling Python functions to x86 is that
functions may not be nested in x86 assembly. Therefore we must
unravel the nesting and define each function at the top level. Moving
the function definitions is straightforward, but it takes a bit more
work to make sure that the function behaves the same way it use to,
after all, many of the variables that were in scope at the point where
the function was originally defined are not in scope at the top level.

When we move a function, we have to worry about the variables
that it refers to that are not parameters or local variables. We say
that a variable reference is bound with respect to a given expression
or statement, let’s call it P , if there is an function or lambda inside P
that encloses the variable reference and that function or lambda has
that variable as a parameter or local. We say that a variable is free
with respect to an expression or statement P if there is a reference
to the variable inside P that is not bound in P . In the following, the
variables y and z are bound in function f, but the variable x is free in
function f.

x = 3

def f(y):

z = 3

return x + y + z

The definition of free variables applies in the same way to nested
functions. In the following, the variables x, y, and z are free in the
lambda expression whereas w is bound in the lambda expression. The
variable x is free in function f, whereas the variables w, y, and z are
bound in f.

x = 3

def f(y):

z = 3

return lambda w: x + y + z + w

Figure 4 gives part of the definition of a function that computes the
free variables of an expression. Finishing this function and defining
a similar function for statements is left to you.

The process of closure conversion turns a function with free vari-
ables into an behaviorally equivalent function without any free vari-
ables. A function without any free variables is called “closed”, hence
the term “closure conversion”. The main trick in closure conversion
is to turn each function into a value that contains a pointer to the
function and a list that stores the values of the free variables. This

62 5. FUNCTIONS

def free_vars(n):

if isinstance(n, Const):

return set([])

elif isinstance(n, Name):

if n.name == ’True’ or n.name == ’False’:

return set([])

else:

return set([n.name])

elif isinstance(n, Add):

return free_vars(n.left) | free_vars(n.right)

elif isinstance(n, CallFunc):

fv_args = [free_vars(e) for e in n.args]

free_in_args = reduce(lambda a, b: a | b, fv_args, set([]))

return free_vars(n.node) | free_in_args

elif isinstance(n, Lambda):

return free_vars(n.code) - set(n.argnames)

...

FIGURE 4. Computing the free variables of an expression.

value is called a closure and you’ll see that big pyobj has been ex-
panded to include a function inside the union. In the explanation
below, we’ll use the runtime function create closure to construct a clo-
sure and the runtime functions get fun ptr and get free vars to access
the two parts of a closure. When a closure is invoked, the free vari-
ables list must be passed as an extra argument to the function so that
it can obtain the values for free variables from the list.

Figure 5 shows the result of applying closure conversion to the
example in Figure 3. The lambda expression has been removed and
the associated code placed in the lambda 0 function. For each of the
free variables of the lambda (x and y), we add assignments inside the
body of lambda 0 to initialize those variables by subscripting into the
free vars 0 list. The lambda expression inside f has been replaced
by a new kind of primitive operation, creating a closure, that takes
two arguments. The first argument is the function name and the sec-
ond is a list containing the values of the free variables. Now when
we call the f function, we get back a closure. To invoke a closure,
we call the closures’ function, passing the closure’s free variable ar-
ray as the first argument. The rest of the arguments are the normal
arguments from the call site.

Note that we also created a closure for function f, even though f

was already a top-level function. The reason for this is so that at any
call site in the program, we can assume that the thing being applied

5.4. OVERVIEW OF HEAPIFYING VARIABLES 63

is a closure and use the above-described approach for translating the
function call.

def lambda_0(free_vars_0, z):

y = free_vars_0[0]

x = free_vars_0[1]

return x + y + z

def lambda_1(free_vars_1, x):

y = 4

return create closure(lambda_0, [y, x])

f = create closure(lambda_1, [])

f1 = get fun ptr(f)(get free vars(f), 1)

print get fun ptr(f1)(get free vars(f1), 3)

FIGURE 5. Closure conversion applied to the example
in Figure 3.

5.4. Overview of heapifying variables

Closure conversion, as described so far, copies the values of the
free variables into the closure’s array. This works as long as the vari-
ables are not updated by a later assignment. Consider the following
program and the output of the python interpreter.

def f(y):

return x + y

x = 2

print f(40)

The read from variable x should be performed when the function is
called, and at that time the value of the variable is 2. Unfortunately,
if we simply copy the value of x into the closure for function f, then
the program would incorrectly access an undefined variable.

We can solve this problem by storing the values of variables on
the heap and storing just a pointer to the variable’s value in the clo-
sure’s array. The following shows the result of heapification for the
above program. Now the variable x refers to a one-element list and
each reference to x has been replaced by a a subscript operation that
accesses the first element of the list (the element at index 0).

x = [0]

def f(y):

64 5. FUNCTIONS

return x[0] + y

x[0] = 2

print f(40)

Applying closure conversion after heapification gives us the follow-
ing result, which correctly preserves the behavior of the original pro-
gram.

def lambda_0(free_vars_0, y):

x = free_vars_0[0]

return x[0] + y

x = [0]

f = create closure(lambda_0, [x])

x[0] = 2

print get fun ptr(f)(get free vars(f), 40)

5.4.1. Discussion. For simplicity, we heapify any variable that
ends up in a closure. While this step feels heavy weight, it is the
most uniform and simplest solution to the problem.

There are certainly opportunities for optimization, but in general,
they require additional static analysis. For example,

• If you can tell statically that a local variable of function will
not be used after the function has returned, then you can
stack allocate it instead of heap allocating. A local variable
that cannot be used after the function returns is said to be
non-escaping, and the analysis to determine whether a vari-
able may escape is called escape analysis. In Heapify, we
perform a simplistic, very conservative escape analysis that
says any variable that ends up in closure may escape. This
analysis is quite conservative, as we may create a closure
that is only used by called functions but never returned nor
stored in the heap.
• If you can tell statically that a variable that ends up in a clo-

sure is not modified after that closure is created, then you
can instead close on the value of the variable instead of its
address (avoiding stack or heap allocation).

5.5. Compiler implementation

Figure 6 shows the suggested organization for the compiler for
this chapter. The next few subsections outline the new compiler
passes and the changes to the other passes.

5.5. COMPILER IMPLEMENTATION 65

Select
Instructions

Lex & Parse Python AST

Python File

x86 Assembly File

Flat Monomorphic
AST

Flatten
Expressions

Print x86

x86 IR
+ If

Explicate
Operations

Allocate
Registers

Monomorphic
AST

x86 IR
+ If

Remove Structured
Control Flow

x86 IR

Heapify
Variables

Closure
Conversion

Monomorphic
AST

Monomorphic
AST

Uniquify
Variables Python AST

FIGURE 6. Organization of the compiler passes.

5.5.1. The Uniquify Variables Pass. During the upcoming heap-
ify pass, we need to do a fair bit of reasoning about variables, and
this reasoning will be a lot easier if we don’t have to worry about
confusing two different variables because they have the same name.
For example, in the following code we do not need to heapify the
global x, but we do have to heapify the parameter x.

x = 3

def f(x):

return lambda y: x + y

print x

Thus, the uniquify variables pass renames every variable to make
sure that each variable has a unique name.

The main issue to keep in mind when implementing the uniquify
variables pass is determining whether a variable use references a
variable in the current scope or one in an outer scope. Python’s spec-
ification is that any variable that is assigned to (statically) is a new
local in the current function’s scope. Also recall that a def f(. . .): . . .

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

66 5. FUNCTIONS

is semantically equivalent to an assignment to a variable f with an
anonymous function.

The renaming can be accomplished by incrementing a global counter
and use the current value of the counter in the variable name. One
strategy is at each new scope, gather all the variables introduced by
the scope, compute their renamings (while saving the renamings in
a dictionary), and finally apply the renaming to the code.

Uniquifying the above example would result in something like
the following:

x_0 = 3

def f_1(x_2):

return lambda y_3: x_2 + y_3

print x_0

5.5.2. The Explicate Operations Pass. To simplify the later passes,
I recommend converting function definitions and lambda’s into a
common form. The common form is like a lambda, but has a body
that contains a statement instead of an expression. Instead of cre-
ating a new AST class, the Lambda class can be re-used to represent
these new kinds of lambdas. The following is a sketch of the trans-
formation for function definitions.

def name(args):

body

=⇒
name = lambda args: body

To convert lambdas to the new form, we simply put the body of the
lambda in a return statement.

lambda args: body

=⇒
lambda args: return body

5.5.3. The Heapify Variables Pass. To implement this pass we
need two helper functions: the function for computing free variables
(Figure 4) and a function for determining which variables occur free
within nested lambdas. This later function is straightforward to im-
plement. It traverses the entire program, and whenever it encounters
a lambda or function definition, it calls the free variables function, re-
moves that functions parameters and local variables from the set of
free variables, then marks the remaining variables as needing heapi-
fication. I suggest using a dictionary for recording which variables
need to be heapified.

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

5.5. COMPILER IMPLEMENTATION 67

Now for the main heapification function. As usual it is a recur-
sive function that traverses the AST. The function returns a new AST.
In the following we discuss the most interesting cases.

Lambda: First, compute the local variables of this lambda; I’ll
name this setL. Let P be the set of parameter names (argnames)
for this lambda. Make the recursive call on the body of the
current lambda. Let body’ be the result of the recursive call.
Then we return a lambda of the following form:

lambda P ′:
paramAllocs
paramInits
localInits
body ′

The list of parameters P ′ is the same as P except that the
parameters that need to be heapified are renamed to new
unique names. Let Ph be the parameters in P that need to be
heapified. The list of statements paramAllocs is a sequence
of assignments, each of which assigns a 1-element list to a
variable in the set Ph. The list of statements paramInits is a
sequence of assignments, each of which sets the first element
in the list referred to by the variables in Ph to the correspond-
ing renamed parameter in P ′. Let Lh be the local variables
in L that need to be heapified. The list of statements localIn-
its is a sequence of assignments, each of which assigns a 1-
element list to a variable in the set Lh.

Name: If the variable x needs to be heapified, then return the
expression x[0]. Otherwise return x unchanged.

Assign: If the left-hand side of the assignment is a AssName,
and the variable x needs to be heapified, then return the as-
signment x[0] = rhs ′, where rhs ′ has been heapified. Other-
wise return the assignment x = rhs ′.

5.5.4. The Closure Conversion Pass. To implement closure con-
version, we’ll write a recursive function that takes one parameter,
the current AST node, and returns a new version of the current AST
node and a list of function definitions that need to be added to the
global scope.

Let us look at the two interesting the cases in the closure conver-
sion functions.

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

68 5. FUNCTIONS

Lambda: The process of closure converting lambda expressions
is similar to converting function definitions. The lambda ex-
pression itself is converted into a closure (an expression cre-
ating a two element list) and a function definition for the
lambda is returned so that it can be placed in the global
scope. So we have

lambda params: body
=⇒
create_closure(globalname, fvs)

where globalname is a freshly generated name and fvs is a list
defined as follows

fvs = free vars(body)− params

Closure conversion is applied recursively to the body , result-
ing in a newbody and a list of function definitions. We return
the closure creating expression create_closure(globalname, fvs)

and the list of function definitions, with the following defi-
nition appended.

def globalname(fvs, params):
fvs1 = fvs[0]
fvs2 = fvs[1]
. . .
fvsn = fvs[n− 1]
return newbody

CallFunc: A function call node includes an expression that should
evaluate ef to a function and the argument expressions e1, . . . , en.
Of course, due to closure conversion, ef should evaluate to a
closure object. We therefore need to transform the CallFunc

so that we obtain the function pointer of the closure and ap-
ply it to the free variable list of the closure followed by the
normal arguments.

ef(e1, . . ., en)
=⇒
let tmp = ef in

get_fun_ptr(tmp)(get_free_vars(tmp), e1, . . ., en)

In this pass it is helpful to use a different AST class for in-
direct function calls, whose operator will be the result of an
expression such as above, versus direct calls to the runtime
C functions.

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

5.5. COMPILER IMPLEMENTATION 69

5.5.5. The Flatten Expressions Pass. The changes to this pass are
straightforward. You just need to add cases to handle functions, re-
turn statements, and indirect function calls.

5.5.6. The Select Instructions Pass. You need to update this pass
to handle functions, return statements, and indirect function calls. At
this point in the compiler it is convenient to create an explicit main
function to hold all the statements other then the function defini-
tions.

5.5.7. The Register Allocation Pass. The primary change needed
in this pass is that you should perform register allocation separately
for each function (i.e., you perform liveness analysis, construct an in-
terference graph, and assign registers for each function separately).

Make sure that your Select Instructions pass saves the callee-save
registers on the stack in the prologue of each function and restores
them in the epilogue. A small optimization would be to wait until
after register allocation to decide which callee-save registers need to
be saved (rather than always saving all).

5.5.8. The Print x86 Pass. You need to update this pass to handle
functions, return statements, and indirect function calls

EXERCISE 5.2. Extend your compiler to handle P2.

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

	Chapter 1. Integers and variables
	1.1. ASTs and the P0 subset of Python
	1.2. Understand the meaning of P0
	1.3. Write recursive functions
	1.4. Learn the x86 assembly language
	1.5. Flatten expressions
	1.6. Select instructions

	Chapter 2. Parsing
	2.1. Lexical analysis
	2.2. Background on CFGs and the P0 grammar.
	2.3. Generating parsers with PLY
	2.4. The LALR(1) algorithm
	2.4.1. Parse table generation
	2.4.2. Resolving conflicts with precedence declarations

	Chapter 3. Register allocation
	3.1. Liveness analysis
	3.2. Building the interference graph
	3.3. Color the interference graph by playing Sudoku
	3.4. Generate spill code
	3.5. Assign homes and remove trivial moves
	3.6. Read more about register allocation

	Chapter 4. Data types and polymorphism
	4.1. Syntax of P1
	4.2. Semantics of P1
	4.3. New Python AST classes
	4.4. Compiling polymorphism
	4.5. The explicate pass
	4.6. Type checking the explicit AST
	4.7. Update expression flattening
	4.8. Update instruction selection
	4.9. Update register allocation
	4.10. Removing structured control flow
	4.11. Updates to print x86

	Chapter 5. Functions
	5.1. Syntax of P2
	5.2. Semantics of P2
	5.3. Overview of closure conversion
	5.4. Overview of heapifying variables
	5.4.1. Discussion

	5.5. Compiler implementation
	5.5.1. The Uniquify Variables Pass
	5.5.2. The Explicate Operations Pass
	5.5.3. The Heapify Variables Pass
	5.5.4. The Closure Conversion Pass
	5.5.5. The Flatten Expressions Pass
	5.5.6. The Select Instructions Pass
	5.5.7. The Register Allocation Pass
	5.5.8. The Print x86 Pass

	Chapter 6. Objects
	6.1. Syntax of P3
	6.2. Semantics of P3
	6.2.1. Inheritance
	6.2.2. Objects
	6.2.3. If and While Statements

	6.3. Compiling Classes and Objects
	6.3.1. Compiling empty class definitions and class attributes
	6.3.2. Compiling class definitions
	6.3.3. Compiling objects
	6.3.4. Compiling bound and unbound method calls

	Appendix
	6.4. x86 Instruction Reference

	Bibliography

