
CHAPTER 4

Data types and polymorphism

The main concepts in this chapter are:
polymorphism: dynamic type checking and dynamic dispatch,
control flow: computing different values depending on a con-

ditional expression,
compile time versus run time: the execution of your compiler

that performs transformations of the input program versus
the execution of the input program after compilation,

type systems: identifying which types of values each expres-
sion will produce, and

heap allocation: storing values in memory.

4.1. Syntax of P1

The P0 subset of Python only dealt with one kind of data type:
plain integers. In this chapter we add Booleans, lists and dictionar-
ies. We also add some operations that work on these new data types,
thereby creating the P1 subset of Python. The syntax for P1 is shown
in Figure 1. We give only the abstract syntax (i.e., assume that all
ambiguity is resolved). Any ambiguity is resolved in the same man-
ner as Python. In addition, all of the syntax from P0 is carried over
to P1 unchanged.

A Python list is a sequence of elements. The standard python in-
terpreter uses an array (a contiguous block of memory) to implement
a list. A Python dictionary is a mapping from keys to values. The
standard python interpreter uses a hashtable to implement dictionar-
ies.

4.2. Semantics of P1

One of the defining characteristics of Python is that it is a dynam-
ically typed language. What this means is that a Python expression
may result in many different types of values. For example, the fol-
lowing conditional expression might result in an integer or a list.

>>> 2 if input() else [1, 2, 3]

37

38 4. DATA TYPES AND POLYMORPHISM

key_datum ::= expression ":" expression

subscription ::= expression "[" expression "]"

expression ::= "True" | "False"

| "not" expression

| expression "and" expression

| expression "or" expression

| expression "==" expression

| expression "!=" expression

| expression "if" expression "else" expression

| "[" expr_list "]"

| "{" key_datum_list "}"

| subscription

| expression "is" expression

expr_list ::= ε
| expression

| expression "," expr_list

key_datum_list ::= ε
| key_datum

| key_datum "," key_datum_list

target ::= identifier

| subscription

simple_statement ::= target "=" expression

FIGURE 1. Syntax for the P1 subset of Python. (In ad-
dition to the syntax of P0.)

In a statically typed language, such as C++ or Java, the above expres-
sion would not be allowed; the type checker disallows expressions
such as the above to ensure that each expression can only result in
one type of value.

Many of the operators in Python are defined to work on many
different types, often performing different actions depending on the
run-time type of the arguments. For example, addition of two lists
performs concatenation.

>>> [1, 2, 3] + [4, 5, 6]

[1, 2, 3, 4, 5, 6]

For the arithmetic operators, True is treated as if it were the inte-
ger 1 and False is treated as 0. Furthermore, numbers can be used
in places where Booleans are expected. The number 0 is treated as
False and everything else is treated as True. Here are a few exam-
ples:

>>> False + True

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

4.2. SEMANTICS OF P1 39

1

>>> False or False

False

>>> 1 and 2

2

>>> 1 or 2

1

Note that the result of a logic operation such as and and or does
not necessarily return a Boolean value. Instead, e1 and e2 evaluates
expression e1 to a value v1. If v1 is equivalent to False, the result of
the and is v1. Otherwise e2 is evaluated to v2 and v2 is the result of the
and. The or operation works in a similar way except that it checks
whether v1 is equivalent to True.

A list may be created with an expression that contains a list of
its elements surrounded by square brackets, e.g., [3,1,4,1,5,9] cre-
ates a list of six integers. The nth element of a list can be accessed
using the subscript notation l[n] where l is a list and n is an integer
(indexing is zero based). For example, [3,1,4,1,5,9][2] evaluates
to 4. The nth element of a list can be changed by using a subscript
expression on the left-hand side of an assignment. For example, the
following fixes the 4th digit of π.

>>> x = [3,1,4,8,5,9]

>>> x[3] = 1

>>> print x

[3, 1, 4, 1, 5, 9]

A dictionary is created by a set of key-value bindings enclosed in
braces. The key and value expression are separated by a colon. You
can lookup the value for a key using the bracket, such as d[7] below.
To assign a new value to an existing key, or to add a new key-value
binding, use the bracket on the left of an assignment.

>>> d = {42: [3,1,4,1,5,9], 7: True}

>>> d[7]

True

>>> d[42]

[3, 1, 4, 1, 5, 9]

>>> d[7] = False

>>> d

{42: [3, 1, 4, 1, 5, 9], 7: False}

>>> d[0] = 1

>>> d[0]

1

40 4. DATA TYPES AND POLYMORPHISM

With the introduction of lists and dictionaries, we have entities
in the language where there is a distinction between identity (the is

operator) and equality (the == operator). The following program, we
create two lists with the same elements. Changing list x does not
affect list y.

>>> x = [1,2]

>>> y = [1,2]

>>> print x == y

True

>>> print x is y

False

>>> x[0] = 3

>>> print x

[3, 2]

>>> print y

[1, 2]

Variable assignment is shallow in that it just points the variable
to a new entity and does not affect the entity previous referred to by
the variable. Multiple variables can point to the same entity, which
is called aliasing.

>>> x = [1,2,3]

>>> y = x

>>> x = [4,5,6]

>>> print y

[1, 2, 3]

>>> y = x

>>> x[0] = 7

>>> print y

[7, 5, 6]

EXERCISE 4.1. Read the sections of the Python Reference Manual
that apply to P1: 3.1, 3.2, 5.2.2, 5.2.4, 5.2.6, 5.3.2, 5.9, and 5.10.

EXERCISE 4.2. Write at least ten programs in the P1 subset of
Python that help you understand the language. Look for corner
cases or unusual aspects of the language to test in your programs.

4.3. New Python AST classes

Figure 2 shows the additional Python classes used to represent
the AST nodes of P1. Python represents True and False as variables
(using the Name AST class) with names ’True’ and ’False’. Python
allows these names to be assigned to, but for P1, you may assume
that they cannot written to (i.e., like input). The Compare class is

http://docs.python.org/ref/objects.html
http://docs.python.org/ref/types.html
http://docs.python.org/ref/atom-literals.html
http://docs.python.org/ref/lists.html
http://docs.python.org/ref/dict.html
http://docs.python.org/ref/subscriptions.html
http://docs.python.org/ref/comparisons.html
http://docs.python.org/ref/Booleans.html

4.4. COMPILING POLYMORPHISM 41

for representing comparisons such as == and !=. The expr attribute
of Compare is for the first argument and the ops member contains a
list of pairs, where the first item of each pair is a string specifying
the operation, such as ’==’, and the second item is the argument.
For P1 we are guaranteed that this list only contains a single pair.
The And and Or classes each contain a list of arguments, held in the
nodes attribute and for P1 this list is guaranteed to have length 2.
The Subscript node represents accesses to both lists and dictionar-
ies and can appear within an expression or on the left-hand-side of
an assignment. The flags attribute should be ignored for the time
being.

class Compare(Node):

def __init__(self, expr, ops):

self.expr = expr

self.ops = ops

class Or(Node):

def __init__(self, nodes):

self.nodes = nodes

class And(Node):

def __init__(self, nodes):

self.nodes = nodes

class Not(Node):

def __init__(self, expr):

self.expr = expr

class List(Node):

def __init__(self, nodes):

self.nodes = nodes

class Dict(Node):

def __init__(self, items):

self.items = items

class Subscript(Node):

def __init__(self, expr, flags, subs):

self.expr = expr

self.flags = flags

self.subs = subs

class IfExp(Node):

def __init__(self, test, then, else_):

self.test = test

self.then = then

self.else_ = else_

FIGURE 2. The Python classes for P1 AST nodes.

4.4. Compiling polymorphism

As discussed earlier, a Python expression may result in different
types of values and that the type may be determined during program
execution (at run-time). In general, the ability of a language to allow
multiple types of values to be returned from the same expression, or
be stored at the same location in memory, is called polymorphism. The
following is the dictionary definition for this word.

pol•y•mor•phism
noun
the occurrence of something in several different forms

The term “polymorphism” can be remembered from its Greek roots:
“poly” means “many” and “morph” means “form”.

Recall the following example of polymorphism in Python.

42 4. DATA TYPES AND POLYMORPHISM

2 if input() else [1, 2, 3]

This expression sometimes results in the integer 2 and sometimes in
the list [1, 2, 3].

>>> 2 if input() else [1, 2, 3]

1

2

>>> 2 if input() else [1, 2, 3]

0

[1, 2, 3]

Consider how the following program would be flattened into a
sequence of statements by our compiler.

print 2 if input() else [1, 2, 3]

We introduce a temporary variable tmp1 which could point to either
an integer or a list depending on the input.

tmp0 = input()

if tmp0:

tmp1 = 2

else:

tmp1 = [1, 2, 3]

print tmp1

Thinking further along in the compilation process, we end up as-
signing variables to registers, so we’ll need a way for a register to
refer to either an integer or a list. Note that in the above, when we
print tmp1, we’ll need some way of deciding whether tmp1 refers to
an integer or a list. Also, note that a list could require many more
bytes than what could fit in a registers.

One common way to deal with polymorphism is called boxing.
This approach places all values on the heap and passes around point-
ers to values in registers. A pointer has the same size regardless of
what it points to, and a pointer fits into a register, so this provides
a simple solution to the polymorphism problem. When allocating a
value on the heap, some space at the beginning is reserved for a tag
(an integer) that says what type of value is stored there. For example,
the tag 0 could mean that the following value is an integer, 1 means
that the value is a Boolean, etc.

Boxing comes with a heavy price: it requires accessing memory
which is extremely slow on modern CPUs relative to accessing val-
ues from registers. Suppose a program just needs to add a couple
integers. Written directly in x86 assembly, the two integers would be
stored in registers and the addition instruction would work directly

4.4. COMPILING POLYMORPHISM 43

on those registers. In contrast, with boxing, the integers must be first
loaded from memory, which could take 100 or more cycles. Further-
more, the space needed to store an integer has doubled: we store a
pointer and the integer itself.

To speed up common cases such as integers and arithmetic, we
can modify the boxing approach as follows. Instead of allocating in-
tegers on the heap, we can instead go ahead and store them directly
in a register, but reserve a couple bits for a tag that says whether
the register contains an integer or whether it contains a pointer to a
larger value such as a list. This technique is somewhat questionable
from a correctness perspective as it reduces the range of plain inte-
gers that we can handle, but it provides such a large performance
improvement that it is hard to resist.

We will refer to the particular polymorphic representation sug-
gested in these notes as pyobj. The file runtime.c includes several
functions for working with pyobj, and those functions can provide
inspiration for how you can write x86 assembly that works with
pyobj. The two least-significant bits of a pyobj are used for the tag;
the following C function extracts the tag from a pyobj.

typedef long int pyobj;

#define MASK 3 /∗ 3 is 11 in binary ∗/
int tag(pyobj val) { return val & MASK; }

The following two functions check whether the pyobj contains an
integer or a Boolean.

#define INT_TAG 0 /∗ 0 is 00 in binary ∗/
#define BOOL_TAG 1 /∗ 1 is 01 in binary ∗/
int is_int(pyobj val) { return (val & MASK) == INT_TAG; }

int is_bool(pyobj val) { return (val & MASK) == BOOL_TAG; }

If the value is too big to fit in a register, we set both tag bits to 1

(which corresponds to the decimal 3).

#define BIG_TAG 3 /∗ 3 is 11 in binary ∗/
int is_big(pyobj val) { return (val & MASK) == BIG_TAG; }

The tag pattern 10 is reserved for later use.
The following C functions in runtime.c provide a way to con-

vert from integers and Boolean values into their pyobj representa-
tion. The idea is to move the value over by 2 bits (losing the top two
bits) and then stamping the tag into those 2 bits.

#define SHIFT 2

pyobj inject_int(int i) { return (i << SHIFT) | INT_TAG; }

pyobj inject_bool(int b) { return (b << SHIFT) | BOOL_TAG; }

44 4. DATA TYPES AND POLYMORPHISM

The next set of C functions from runtime.c provide a way to extract
an integer or Boolean from its pyobj representation. The idea is sim-
ply to shift the values back over by 2, overwriting the tag bits. Note
that before applying one of these projection functions, you should
first check the tag so that you know which projection function should
be used.

int project_int(pyobj val) { return val >> SHIFT; }

int project_bool(pyobj val) { return val >> SHIFT; }

The following C structures define the heap representation for big
values. The hashtable structure is defined in the provided hashtable
C library.

enum big_type_tag { LIST, DICT };

struct list_struct {

pyobj* data;

unsigned int len;

};

typedef struct list_struct list;

struct pyobj_struct {

enum big_type_tag tag;

union {

struct hashtable* d;

list l;

} u;

};

typedef struct pyobj_struct big_pyobj;

When we grow the subset of Python to include more features, such
as functions and objects, the alternatives within big type tag will
grow as will the union inside of pyobj struct.

The following C functions from runtime.c provide a way to con-
vert from big pyobj* to pyobj and back again.

pyobj inject_big(big_pyobj* p) { return ((long)p) | BIG_TAG; }

big_pyobj* project_big(pyobj val)

{ return (big_pyobj*)(val & ~MASK); }

The inject big function above reveals why we chose to use two bits
for tagging. It turns out that on Linux systems, malloc always aligns
newly allocated memory at addresses that are multiples of four. This
means that the two least significant bits are always zero! Thus, we
can use that space for the tag without worrying about destroying

4.5. THE EXPLICATE PASS 45

the address. We can simply zero-out the tag bits to get back a valid
address.

The runtime.c file also provides a number of C helper functions
for performing arithmetic operations and list/dictionary operations
on pyobj.

int is_true(pyobj v);

void print_any(pyobj p);

pyobj input_int();

big_pyobj* create_list(pyobj length);

big_pyobj* create_dict();

pyobj set_subscript(pyobj c, pyobj key, pyobj val);

pyobj get_subscript(pyobj c, pyobj key);

big_pyobj* add(big_pyobj* x, big_pyobj* y);

int equal(big_pyobj* x, big_pyobj* y);

int not_equal(big_pyobj* x, big_pyobj* y);

You will need to generate code to do tag testing, to dispatch to
different code depending on the tag, and to inject and project values
from pyobj. We recommend accomplishing this by adding a new
compiler pass after parsing and in front of flattening. For lack of a
better name, we call this the ’explicate’ pass because it makes explicit
the types and operations.

4.5. The explicate pass

As we have seen in Section 4.4, compiling polymorphism requires
a representation at run time that allows the code to dispatch between
operations on different types. This dispatch is enabled by using
tagged values.

At this point, it is helpful to take a step back and reflect on why
polymorphism in P1 causes a large shift in what our compilers must
do as compared to compiling P0 (which is completely monomor-
phic). Consider the following assignment statement:

(4.1) y = x + y

As a P0 program, when our compiler sees the x + y expression at
compile time, it knows immediately that x and y must correspond to
integers at run time. Therefore, our compiler can select following x86
instruction to implement the above assignment statement.

addl x, y

This x86 instruction has the same run-time behavior as the above
assignment statement in P0 (i.e., they are semantically equivalent).

46 4. DATA TYPES AND POLYMORPHISM

Now, consider the example assignment statement (4.1) again but
now as a P1 program. At compile time, our compiler has no way to
know whether x + y corresponds to an integer addition, a list con-
catenation, or an ill-typed operation. Instead, it must generate code
that makes the decision on which operation to perform at run time. In
a sense, our compiler can do less at compile now: it has less certain
information at compile time and thus must generate code to make
decisions at run time. Overall, we are trading off execution speed
with flexibility with the introduction of polymorphic operations in
our input language.

To provide intuition for this trade off, let us consider a real world
analogy. Suppose you a planning a hike for some friends. There are
two routes that you are considering (let’s say the two routes share
the same initial path and fork at some point). Basically, you have two
choices: you can decide on a route before the hike (at “plan time”) or
you can wait to make the decision with your friends during the hike
(at “hike time”). If you decide beforehand at plan time, then you can
simplify your planning; for example, you can input GPS coordinates
for the route on which you decided and leave your map for the other
route at home. If you want to be more flexible and decide the route
during the hike, then you have to bring maps for both routes in order
to have sufficient information to make at hike time. The analogy to
your compiler is that to be more flexible at run time (∼ hike time),
then your compilation (∼ hike planning) requires you to carry tag
information at run time (∼ a map at hike time).

Returning to compiling P1, Section 4.4 describes how we will rep-
resent the run-time tags. The purpose of the explicate pass is to gen-
erate the dispatching code (i.e., the decision making code). After
the explicate pass is complete, the explicit AST that is produced will
make explicit operations on integers and Booleans. In other words,
all operations that remain will be apply to integers, Booleans, or
big pyobj*s. Let us focus on the polymorphic + operation in the
the example assignment statement (4.1). The AST produced by the
parser is as follows:

(4.2) Add((Name(’x’), Name(’y’))) .

We need to create an AST that captures deciding which “+” operation
to use based on the run-time types of x and y.

For +, we have three possibilities: integer addition, list concate-
nation, or type error. We want a case for integer addition, as we can
implement that operation efficiently with an addl instruction. To de-
cide whether we have list concatenation or error, we decide to leave

4.5. THE EXPLICATE PASS 47

that dispatch to a call in runtime.c, as a list concatenation is expen-
sive anyway (i.e., requires going to memory). The add function

big_pyobj* add(big_pyobj* x, big_pyobj* y)

in runtime.c does exactly what is described here. To represent the
two cases in an explicit AST, we will reuse the Add node for integer
addition and a CallFunc node to add for the big_pyobj* addition.
Take note that the Add node before the explicate pass represents the
polymorphic + of P1, but it represents integer addition in an explicit
AST after the explicate pass. Another choice could have been to cre-
ate an IntegerAdd node kind to make it clear that it applies only to
integers.

Now that we have decided which node kinds will represent which
+ operations, we know that the explicit AST for expression (4.2) is in-
formally as follows:

IfExp(

tag of Name(’x’) is ‘int or bool’
and tag of Name(’y’) is ‘int or bool’,

convert back to ’pyobj’
Add(convert to ‘int’ Name(’x’), convert to ‘int’ Name(’y’)),

IfExp(

tag of Name(’x’) is ‘big’
and tag of Name(’y’) is ‘big’,

convert back to ’pyobj’
CallFunc(Name(’add’),

[convert to ’big’ Name(’x’), convert to ’big’ Name(’y’)]),

CallFunc(... abort because of run-time type error ...)

)

)

Looking at the above explicit AST, our generated code will at run
time look at the tag of the polymorphic values for x and y to decide
whether it is an integer add (i.e., Add(. . .)) or a big_pyobj* add (i.e.,
CallFunc(Name(’add’), . . .)).

What are these “convert” operations? Recall that at run time we
need a polymorphic representation of values (i.e., some 32-bit value
that can be an ’int’, ’bool’, ’list’, or ’dict’), which we call pyobj. It is
a pyobj that has a tag. However, the integer add at run time (which

48 4. DATA TYPES AND POLYMORPHISM

corresponds to the Add AST node here at compile time) should take
“pure” integer arguments (i.e., without tags). Similar, the add func-
tion call takes big_pyobj* arguments (not pyobj). We need to gen-
erate code that converts pyobjs to other types at appropriate places.
From Section 4.4, we have described how we get the integer, boolean,
or big_pyobj* part from a pyobj by shifting or masking. Thus, for
“convert to whatever” in the above, we need insert AST nodes that
represent these type conversions. To represent these new type con-
version operations, we recommend creating two new AST classes:
ProjectTo that represents converting from pyobj to some other type
and InjectFrom that represents converting to pyobj from some other
type. Analogously, we create a GetTag AST class to represent tag
lookup, which will be implemented with the appropriate masking.

Note that we might have ben tempted to insert AST nodes that
represent directly shifting or masking. While this choice could work,
we choose to separate the conceptual operation (i.e., type conver-
sion) from the actual implementation mechanism (i.e., shifting or
masking). Our instruction selection phase will implement ProjectTo
and InjectFrom with the appropriate shift or masking instructions.

As a compiler writer, there is one more concern in implement-
ing the explicate pass. Suppose we are implementing the case for
explicating Add, that is, we are implementing the transformation in
general for

Add((e1, e2))

where e1, e2 are arbitrary subexpressions. Observe in the explicit
AST example above, Name(’x’) corresponds to e1 and Name(’y’) to e2.
Furthermore, observe that Name(’x’) and Name(’y’) each appear four
times in the output explicit AST. If instead of Names, we have arbitrary
expressions and duplicate them in the same manner, we run into cor-
rectness issues. In particular, if e1 or e2 are side-effecting expressions
(i.e., include input()), then duplicating them would change the se-
mantics of the program (e.g., we go from reading once to multiple
times). Thus, we need to evaluate the subexpressions once before
duplicating them, that is, we can bind the subexpressions to Names
and then use the Names in their place.

We introduce a Let construct for this purpose:

Let(var, rhs, body) .

The Let construct is needed so that you can use the result of an
expression multiple times without duplicating the expression itself,
which would duplicate its effects. The semantics of the Let is that

4.6. TYPE CHECKING THE EXPLICIT AST 49

class GetTag(Node):

def __init__(self, arg):

self.arg = arg

class InjectFrom(Node):

def __init__(self, typ, arg):

self.typ = typ

self.arg = arg

class ProjectTo(Node):

def __init__(self, typ, arg):

self.typ = typ

self.arg = arg

class Let(Node):

def __init__(self, var, rhs, body):

self.var = var

self.rhs = rhs

self.body = body

FIGURE 3. New internal AST classes for the output of
the explicate pass.

the rhs should be evaluated and then assigned to the variable var.
Then the body should be evaluated where the body can refer to the
variable. For example, the expression

Add((Add((Const(1), Const(2))) , Const(3)))

should evaluate to the same value as
Let(Name(’x’), Add((Const(1), Const(2))),

Add((Name(’x’) , Const(3))))

(i.e., they are equivalent semantically).
Overall, to represent the new operations in your abstract syntax

trees, we recommend creating the new AST classes in Figure 3.

EXERCISE 4.3. Implement an explicate pass that takes a P1 AST
with polymorphic operations and explicates it to produce an explicit
AST where all such polymorphic operations have been transformed
to dispatch code to monomorphic operations.

4.6. Type checking the explicit AST

A good way to catch errors in your compiler is to check whether
the type of value produced by every expression makes sense. For

50 4. DATA TYPES AND POLYMORPHISM

example, it would be an error to have a projection nested inside of
another projection:

ProjectTo(’int’,

ProjectTo(’int’, InjectFrom(’int’, Const(1)))

)

The reason is that projection expects the subexpression to be a pyobj.
What we describe in this section is a type checking phase applied

to the explicit AST produced as a sanity check for your explicate
pass. The explicate pass can be tricky to get right, so we want to
have way to detect errors in the explicate pass before going through
the rest of the compiler. Note that the type checking that we describe
here does not reject input programs at compile time as we may be
used to from using statically-typed languages (e.g., Java). Rather,
any type errors that result from using the checker that we describe
here points to a bug in the explicate pass.

It is common practice to specify what types are expected by writ-
ing down an “if-then” rule for each kind of AST node. For example,
the rule for ProjectTo is:

For any expression e and any type T selected from
the set { int, bool, big }, if e has type pyobj, then
ProjectTo(T, e) has type T .

It is also common practice to write “if-then” rules using a horizontal
line, with the “if” part written above the line and the “then” part
written below the line.

e has type pyobj T ∈ {int, bool, big}
ProjectTo(T, e) has type T

Because the phrase “has type” is repeated so often in these type
checking rules, it is abbreviated to just a colon. So the above rule
is abbreviated to the following.

e : pyobj T ∈ {int, bool, big}
ProjectTo(T, e) : T

The Let(var, rhs, body) construct poses an interesting chal-
lenge. The variable var is assigned the rhs and is then used inside
body. When we get to an occurrence of var inside body, how do we
know what type the variable will be? The answer is that we need a
dictionary to map from variable names to types. A dictionary used
for this purpose is usually called an environment (or in older books, a
symbol table). The capital Greek letter gamma, written Γ, is typically
used for referring to environments. The notation Γ, x : T stands for

4.7. UPDATE EXPRESSION FLATTENING 51

making a copy of the environment Γ and then associating T with the
variable x in the new environment. The type checking rules for Let
and Name are therefore as follows.

e1 : T1 in Γ e2 : T2 in Γ, x : T1
Let(x, e1, e2) : T2 in Γ

Γ[x] = T

Name(x) : T in Γ

Type checking has roots in logic, and logicians have a tradition of
writing the environment on the left-hand side and separating it from
the expression with a turn-stile (`). The turn-stile does not have any
intrinsic meaning per se. It is punctuation that separates the envi-
ronment Γ from the expression e. So the above typing rules are com-
monly written as follows.

Γ ` e1 : T1 Γ, x : T1 ` e2 : T2
Γ ` Let(x, e1, e2) : T2

Γ[x] = T

Γ ` Name(x) : T

Overall, the statement Γ ` e : T is an example of what is called
a judgment. In particular, this judgment says, “In environment Γ,
expression e has type T .” Figure 4 shows the type checking rules for
all of the AST classes in the explicit AST.

EXERCISE 4.4. Implement a type checking function that makes
sure that the output of the explicate pass follows the rules in Figure 4.
Also, extend the rules to include checks for statements.

4.7. Update expression flattening

The output AST from the explicate pass contains a number of
new AST classes that were not handled by the flatten function
from chapter 1. The new AST classes are IfExp, Compare, Subscript,
GetTag, InjectFrom, ProjectTo, and Let. The Let expression simply
introduces an extra assignment, and therefore no Let expressions
are needed in the output. When flattening the IfExp expression,
I recommend using an If statement to represent the control flow
in the output. Alternatively, you could reduce immediately to la-
bels and jumps, but that makes liveness analysis more difficult. In
liveness analysis, one needs to know what statements can preceed a
given statement. However, in the presense of jump instructions, you
would need to build an explicit control flow graph in order to know
the preceeding statements. Instead, I recommend postponing the re-
duction to labels and jumps to after register allocation, as discussed
below in Section 4.10.

EXERCISE 4.5. Update your flatten function to handle the new
AST classes. Alternatively, rewrite the flatten function into a visitor

52 4. DATA TYPES AND POLYMORPHISM

n is an integer
Γ ` Const(n) : int

b is a Boolean
Γ ` Const(b) : bool

Γ[x] = T

Γ ` Name(x) : T

Γ ` e1 : int Γ ` e2 : int

Γ ` Add(e1, e2) : int
Γ ` e : int

Γ ` UnarySub(e) : int

Γ ` e1 : bool Γ ` e2 : T Γ ` e3 : T

Γ ` IfExp(e1, e2, e3) : T

Γ ` e : T
T ∈ {int, bool, big}

Γ ` InjectFrom(T, e) : pyobj

Γ ` e : pyobj
T ∈ {int, bool, big}

Γ ` ProjectTo(T, e) : T

Γ ` e : pyobj

Γ ` GetTag(e) : int

Γ ` e1 : pyobj Γ ` e2 : pyobj

Γ ` Compare(e1, [(is, e2)]) : bool

Γ ` e1 : T Γ ` e2 : T T ∈ {int, bool} op ∈ {==, !=}
Γ ` Compare(e1, [(op, e2)]) : bool

Γ ` e1 : T1 Γ, x : T1 ` e2 : T2
Γ ` Let(x, e1, e2) : T2

Γ ` e1 : pyobj Γ ` e2 : pyobj

Γ ` Subscript(e1, e2) : pyobj

FIGURE 4. Type checking rules for expressions in the
explicit AST.

class and then create a new visitor class that inherits from it and that
implements visit methods for the new AST nodes.

4.8. Update instruction selection

The instruction selection phase should be updated to handle the
new AST classes If, Compare, Subscript, GetTag, InjectFrom, and
ProjectTo. Consult Appendix 6.4 for suggestions regarding which
x86 instructions to use for translating the new AST classes. Also, you
will need to update the function call for printing because you should
now use the print any function.

EXERCISE 4.6. Update your instruction selection pass to handle
the new AST classes.

4.10. REMOVING STRUCTURED CONTROL FLOW 53

4.9. Update register allocation

Looking back at Figure 5, there are several sub-passes within the
register allocation pass, and each sub-pass needs to be updated to
deal with the new AST classes.

In the liveness analysis, the most interesting of the new AST classes
is the If statement. What liveness information should be propagated
into the “then” and “else” branch and how should the results from
the two branches be combined to give the result for the entire If? If
we could somehow predict the result of the test expression, then we
could select the liveness results from one branch or the other as the
results for the If. However, its impossible to predict this in general
(e.g., the test expression could be input())), so we need to make a
conservative approximation: we assume that either branch could be
taken, and therefore we consider a variable to be live if it is live in
either branch.

The code for building the interference graph needs to be updated
to handle If statements, as does the code for finding all of the local
variables. In addition, you need to account for the fact that the reg-
ister al is really part of register eax and that register cl is really part
of register ecx.

The graph coloring algorithm itself works on the interference
graph and not the AST, so it does not need to be changed.

The spill code generation pass needs to be updated to handle If

statements and the new x86 instructions that you used in the instruc-
tion selection pass.

Similarly, the code for assigning homes (registers and stack loca-
tions) to variables must be updated to handle If statements and the
new x86 instructions.

4.10. Removing structured control flow

Now that register allocation is finished, and we no longer need
to perform liveness analysis, we can lower the If statements down
to x86 assembly code by replacing them with a combination of labels
and jumps. The following is a sketch of the transformation from If

AST nodes to labels and jumps.

if x:
then instructions

else:

else instructions

=⇒

54 4. DATA TYPES AND POLYMORPHISM

cmpl $0, x
je else_label_5

then instructions
jmp end_label_5

else_label_5:

else instructions
end_label_5:

EXERCISE 4.7. Write a compiler pass that removes If AST nodes,
replacing them with combinations of labels and jumps.

4.11. Updates to print x86

You will need to update the compiler phase that translates the
x86 intermediate representation into a string containing the x86 as-
sembly code, handling all of the new instructions introduced in the
instruction selection pass and the above pass that removes If state-
ments.

Putting all of the above passes together, you should have a com-
plete compiler for P1.

EXERCISE 4.8. Extend your compiler to handle the P1 subset of
Python. You may use the parser from Python’s compiler module, or
for extra credit you can extend your own parser. Figure 5 shows the
suggested organization for your compiler.

4.11. UPDATES TO PRINT X86 55

Select
Instructions

Lex & Parse Python AST

Python File

x86 Assembly File

Flat Explicit
Python AST

Flatten
Expressions

Print x86

x86 IR
+ If

Explicate
Operations

Allocate
Registers

Explicit
Python AST

x86 IR
+ If

Remove Structured
Control Flow

x86 IR

FIGURE 5. Overview of the compiler organization.

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

	Chapter 1. Integers and variables
	1.1. ASTs and the P0 subset of Python
	1.2. Understand the meaning of P0
	1.3. Write recursive functions
	1.4. Learn the x86 assembly language
	1.5. Flatten expressions
	1.6. Select instructions

	Chapter 2. Parsing
	2.1. Lexical analysis
	2.2. Background on CFGs and the P0 grammar.
	2.3. Generating parsers with PLY
	2.4. The LALR(1) algorithm
	2.4.1. Parse table generation
	2.4.2. Resolving conflicts with precedence declarations

	Chapter 3. Register allocation
	3.1. Liveness analysis
	3.2. Building the interference graph
	3.3. Color the interference graph by playing Sudoku
	3.4. Generate spill code
	3.5. Assign homes and remove trivial moves
	3.6. Read more about register allocation

	Chapter 4. Data types and polymorphism
	4.1. Syntax of P1
	4.2. Semantics of P1
	4.3. New Python AST classes
	4.4. Compiling polymorphism
	4.5. The explicate pass
	4.6. Type checking the explicit AST
	4.7. Update expression flattening
	4.8. Update instruction selection
	4.9. Update register allocation
	4.10. Removing structured control flow
	4.11. Updates to print x86

	Chapter 5. Functions
	5.1. Syntax of P2
	5.2. Semantics of P2
	5.3. Overview of closure conversion
	5.4. Overview of heapifying variables
	5.4.1. Discussion

	5.5. Compiler implementation
	5.5.1. The Uniquify Variables Pass
	5.5.2. The Explicate Operations Pass
	5.5.3. The Heapify Variables Pass
	5.5.4. The Closure Conversion Pass
	5.5.5. The Flatten Expressions Pass
	5.5.6. The Select Instructions Pass
	5.5.7. The Register Allocation Pass
	5.5.8. The Print x86 Pass

	Chapter 6. Objects
	6.1. Syntax of P3
	6.2. Semantics of P3
	6.2.1. Inheritance
	6.2.2. Objects
	6.2.3. If and While Statements

	6.3. Compiling Classes and Objects
	6.3.1. Compiling empty class definitions and class attributes
	6.3.2. Compiling class definitions
	6.3.3. Compiling objects
	6.3.4. Compiling bound and unbound method calls

	Appendix
	6.4. x86 Instruction Reference

	Bibliography

