
CHAPTER 3

Register allocation

In chapter 1 we simplified the generation of x86 assembly by
placing all variables on the stack. We can improve the performance
of the generated code considerably if we instead try to place as many
variables as possible into registers. The CPU can access a register in
a single cycle, whereas accessing the stack can take from several cy-
cles (to go to cache) to hundreds of cycles (to go to main memory).
Figure 1 shows a program fragment that we’ll use as a running ex-
ample. The program is almost in x86 assembly but not quite; it still
contains variables instead of stack locations or registers.

The goal of register allocation is to fit as many variables into reg-
isters as possible. It is often the case that we have more variables
than registers, so we can’t naively map each variable to a register.
Fortunately, it is also common for different variables to be needed
during different periods of time, and in such cases the variables can
be mapped to the same register. Consider variables y and z in Fig-
ure 1. After the variable z is used in addl z, x it is no longer needed.
Variable y, on the other hand, is only used after this point, so z and
y could share the same register.

movl $4, z

movl $0, w

movl $1, z

movl w, x

addl z, x

movl w, y

addl x, y

movl y, w

addl x, w

FIGURE 1. An example program in pseudo assembly
code. The program still uses variables instead of regis-
ters and stack locations.

27

28 3. REGISTER ALLOCATION

3.1. Liveness analysis

A variable whose current value is needed later on in the program
is called live.

DEFINITION 3.1. A variable is live if the variable is used at some
later point in the program and there is not an intervening assignment
to the variable.

To understand the latter condition, consider variable z in Figure 1. It
is not live immediately after the instruction movl $4, z because the
later uses of z get their value instead from the instruction movl $1,

z. The variable z is live between z = 1 and its use in addl z, x. We
have annotated the program with the set of variables that are live
between each instruction.

The live variables can be computed by traversing the instruc-
tion sequence back to front (i.e., backwards in execution order). Let
I1, . . . , In be the instruction sequence. We write Lafter(k) for the set
of live variables after instruction Ik and Lbefore(k) for the set of live
variables before instruction Ik. The live variables after an instruction
is always equal to the live variables before the next instruction.

Lafter(k) = Lbefore(k + 1)

To start things off, there are no live variables after the last instruction,
so we have

Lafter(n) = ∅
We then apply the following rule repeatedly, traversing the instruc-
tion sequence back to front.

Lbefore(k) = (Lafter(k)−W (k)) ∪R(k),

where W (k) are the variables written to by instruction Ik and R(k)
are the variables read by instruction Ik. Figure 2 shows the results of
live variables analysis for the example program from Figure 1.

Implementing the live variable analysis in Python is straightfor-
ward thanks to the built-in support for sets. You can construct a set
by first creating a list and then passing it to the set function. The
following creates an empty set:

>>> set([])

set([])

You can take the union of two sets with the | operator:
>>> set([1,2,3]) | set([3,4,5])

set([1, 2, 3, 4, 5])

To take the difference of two sets, use the - operator:

3.2. BUILDING THE INTERFERENCE GRAPH 29

movl $4, z
{}

movl $0, w
{w}

movl $1, z
{w, z}

movl w, x
{x, w, z}

addl z, x
{x, w}

movl w, y
{x, y}

addl x, y
{x, y}

movl y, w
{w, x}

addl x, w
{}

FIGURE 2. The example program annotated with the
set of live variables between each instruction.

>>> set([1,2,3]) - set([3,4,5])

set([1, 2])

Also, just like lists, you can use Python’s for loop to iterate through
the elements of a set:

>>> for x in set([1,2,2,3]):

... print x

1

2

3

3.2. Building the interference graph

Based on the liveness analysis, we know the program regions
where each variable is needed. However, during register allocation,
we’ll need to answer questions of the specific form: are variables u
and v ever live at the same time? (And therefore can’t be assigned
to the same register.) To make this question easier to answer, we cre-
ate an explicit data structure, an interference graph. An interference
graph is an undirected graph that has an edge between two vari-
ables if they are live at the same time, that is, if they interfere with
each other.

30 3. REGISTER ALLOCATION

x

yz

w

FIGURE 3. Interference graph for the example program.

The most obvious way to compute the interference graph is to
look at the set of live variables between each statement in the pro-
gram, and add an edge to the graph for every pair of variables in the
same set. This approach is less than ideal for two reasons. First, it
can be rather expensive because it takes O(n2) time to look at every
pair in a set of n live variables. Second, there’s a special case in which
two variables that are live at the same time don’t actually interfere
with each other: when they both contain the same value.

A better way to compute the edges of the intereference graph is
given by the following rules.

• If instruction Ik is a move: movl s, t, then add the edge (t, v)
for every v ∈ Lafter(k) unless v = t or v = s.
• If instruction Ik is not a move but some other arithmetic in-

struction such as addl s, t, then add the edge (t, v) for every
v ∈ Lafter(k) unless v = t.
• If instruction Ik is of the form call label , then add an edge

(r, v) for every caller-save register r and every variable v ∈
Lafter(k). (The caller-save registers are eax, ecx, and edx.)

Working from the top to bottom of Figure 2, z interferes with w

and x, w interferes with x, and y interferes with x. In the second to
last statement, we see that w interferes with x, but we already know
that. The resulting interference graph is shown in Figure 3.

In Python, a convenient representation for graphs is to use a dic-
tionary that maps nodes to a set of adjacent nodes. So for the inter-
ference graph, the dictionary would map variable names to sets of
variable names.

Consider the first instruction in Figure 2, movl $4, z. The Lafter

set for this instruction is the empty set, in particular, z is not live
which means that this movl is useless, or in compiler lingo, it’s dead.
It is tempting to remove dead instructions during the construction
of the interference graph, but in general, it’s better to keep each
pass focused on just one job, making it easier to debug and main-
tain the code. A more principled approach is to insert a pass after

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

3.3. COLOR THE INTERFERENCE GRAPH BY PLAYING SUDOKU 31

liveness analysis that removes dead instructions. Also, removing
dead instructions may cause more instructions to become dead, so
one could iterate the liveness analysis and dead-code removal passes
until there is no more dead code to remove. However, to really
do dead-code elimination right, one should combine it with several
other optimizations, such as constant propagation, constant folding,
and procedure inlining [22]. This combination of optimizations is a
good choice of topic for your final project.

3.3. Color the interference graph by playing Sudoku

We now come to the main event, mapping variables to registers
(or to stack locations in the event that we run out of registers). We
need to make sure not to map two variables to the same register if the
two variables interfere with each other. In terms of the interference
graph, this means we cannot map adjacent nodes to the same regis-
ter. If we think of registers as colors, the register allocation problem
becomes the widely-studied graph coloring problem [1, 17].

The reader may actually be more familar with the graph coloring
problem then he or she realizes; the popular game of Sudoku is an
instance of graph coloring. The following describes how to build a
graph out of a Sudoku board.

• There is one node in the graph for each Sudoku square.
• There is an edge between two nodes if the corresponding

squares are in the same row or column, or if the squares are
in the same 3× 3 region.
• Choose nine colors to correspond to the numbers 1 to 9.
• Based on the initial assignment of numbers to squares in the

Sudoku board, assign the corresponding colors to the corre-
sponding nodes in the graph.

If you can color the remaining nodes in the graph with the nine col-
ors, then you’ve also solved the corresponding game of Sudoku.

Given that Sudoku is graph coloring, one can use Sudoku strate-
gies to come up with an algorithm for allocating registers. For exam-
ple, one of the basic techniques for Sudoku is Pencil Marks. The idea
is that you use a process of elimination to determine what numbers
still make sense for a square, and write down those numbers in the
square (writing very small). At first, each number might be a pos-
sibility, but as the board fills up, more and more of the possibilities
are crossed off (or erased). For example, if the number 1 is assigned
to a square, then by process of elimination, you can cross off the 1

32 3. REGISTER ALLOCATION

pencil mark from all the squares in the same row, column, and re-
gion. Many Sudoku computer games provide automatic support for
Pencil Marks. This heuristic also reduces the degree of branching in
the search tree.

The Pencil Marks technique corresponds to the notion of color
saturation due to Brélaz [3]. The saturation of a node, in Sudoku
terms, is the number of possibilities that have been crossed off using
the process of elimination mentioned above. In graph terminology,
we have the following definition:

saturation(u) = |{c | ∃v.v ∈ Adj(u) and color(v) = c}|
where Adj(u) is the set of nodes adjacent to u and the notation |S|
stands for the size of the set S.

Using the Pencil Marks technique leads to a simple strategy for
filling in numbers: if there is a square with only one possible num-
ber left, then write down that number! But what if there aren’t any
squares with only one possibility left? One brute-force approach is to
just make a guess. If that guess ultimately leads to a solution, great.
If not, backtrack to the guess and make a different guess. Of course,
this is horribly time consuming. One standard way to reduce the
amount of backtracking is to use the most-constrained-first heuris-
tic. That is, when making a guess, always choose a square with the
fewest possibilities left (the node with the highest saturation). The
idea is that choosing highly constrained squares earlier rather than
later is better because later there may not be any possibilities left.

In some sense, register allocation is easier than Sudoku because
we can always cheat and add more numbers by spilling variables to
the stack. Also, we’d like to minimize the time needed to color the
graph, and backtracking is expensive. Thus, it makes sense to keep
the most-constrained-first heuristic but drop the backtracking in fa-
vor of greedy search (guess and just keep going). Figure 4 gives the
pseudo-code for this simple greedy algorithm for register allocation
based on saturation and the most-constrained-first heuristic, which
is roughly equivalent to the DSATUR algorithm of Brélaz [3] (also
known as saturation degree ordering (SDO) [7, 15]). Just as in Su-
doku, the algorithm represents colors with integers, with the first k
colors corresponding to the k registers in a given machine and the
rest of the integers corresponding to stack locations.

3.4. Generate spill code

In this pass we need to adjust the program to take into account
our decisions regarding the locations of the local variables. Recall

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

3.4. GENERATE SPILL CODE 33

Algorithm: DSATUR
Input: the inference graph G
Output: an assignment color(v) for each node v ∈ G

W ← vertices(G)
while W 6= ∅ do

pick a node u from W with the highest saturation,
breaking ties randomly

find the lowest color c that is not in {color(v) | v ∈ Adj(v)}
color(u) = c
W ← W − {u}

FIGURE 4. Saturation-based greedy graph coloring algorithm.

that x86 assembly only allows one operand per instruction to be a
memory access. For instance, suppose we have a move movl y, x

where x and y are assigned to different memory locations on the
stack. We need to replace this instruction with two instructions, one
that moves the contents of y into a register and then another instruc-
tion that moves the register’s contents into x. But what register? We
could reserve a register for this purpose, and use the same register
for every move between two stack locations. However, that would
decrease the number of registers available for other uses, sometimes
requiring the allocator to spill more variables.

Instead, we recommend creating a new temporary variable (not
yet assigned to a register or stack location) and rerunning the register
allocator on the new program, where movl y, x is replaced by

movl y, tmp0

movl tmp0, x

The tmp0 variable will have a very short live range, so it does not
make the overall graph coloring problem harder to solve. How-
ever, to prevent tmp0 from being spilled and then needing yet an-
other temporary, we recommend marking tmp0 as “unspillable” and
changing the graph coloring algorithm with respect to how it picks
the next node. Instead of breaking ties randomly between nodes
with equal saturation, give preference to nodes marked as unspill-
able.

If you did not need to introduce any new temporaries, then reg-
ister allocation is complete. Otherwise, you need to go back and do

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

34 3. REGISTER ALLOCATION

another iteration of live variable analysis, graph building, graph col-
oring, and generating spill code. When you start the next iteration,
do not start from scratch; keep the spill decisions, that is, which vari-
ables are spilled and their assigned stack locations, but redo the allo-
cation for the new temporaries and the variables that were assigned
to registers.

3.5. Assign homes and remove trivial moves

Once the register allocation algorithm has settled on a coloring,
update the program by replacing variables with their homes: reg-
isters or stack locations. In addition, delete trivial moves. That is,
wherever you have a move between two variables, such as

movl y, x

where x and y have been assigned to the same location (register or
stack location), delete the move instruction.

EXERCISE 3.1. Update your compiler to perform register alloca-
tion. Test your updated compiler on your suite of test cases to make
sure you haven’t introduced bugs. The suggested organization of
your compiler is shown in Figure 7. What is the time complexity
of your register allocation algorithm? If it is greater than O(n log n),
find a way to make it O(n log n), where n is the number of variables
in the program.

3.6. Read more about register allocation

The general graph coloring problem is NP-complete [6], so find-
ing an optimal coloring (fewest colors) takes exponential time (for
example, by using a backtracking algorithm). However, there are
many algorithms for finding good colorings and the search for even
better algorithms is an ongoing area of research. The most widely
used coloring algorithm for register allocation is the classic algo-
rithm of Chaitin [5]. Briggs describes several improvements to the
classic algorithm [4]. Numerous others have also made refinements
and proposed alternative algorithms. The interested reader can google
“register allocation”.

More recently, researchers have noticed that the interference graphs
that arise in compilers using static single-assignment form have a
special property, they are chordal graphs. This property allows a
simple algorithm to find optimal colorings [8]. Furthermore, even if
the compiler does not use static single-assignment form, many inter-
ference graphs are either chordal or nearly chordal [16].

3.6. READ MORE ABOUT REGISTER ALLOCATION 35

Select
InstructionsLex & Parse Python AST

Python File

x86 Assembly File

Flat
Python AST

Flatten
Expressions

Build Interefence
GraphColor the Graph

Introduce Spill
Code Assign Homes Print x86

x86 IR

x86 IR
+ graph

x86 IR
+ coloring

x86 IR x86 IR

Liveness
Analysis

x86 IR
+ liveness

FIGURE 5. Suggested organization of the compiler.

The chordal graph coloring algorithm consists of putting two
standard algorithms together. The first algorithm orders the nodes
so that that the next node in the sequence is always the node that is
adjacent to the most nodes further back in the sequence. This algo-
rithm is called the maximum cardinality search algorithm (MCS) [18].
The second algorithm is the greedy coloring algorithm, which sim-
ply goes through the sequence of nodes produced by MCS and as-
signs a color to each node. The ordering produced by the MCS is
similar to the most-constrained-first heuristic: if you’ve already col-
ored many of the neighbors of a node, then that node likely does
not have many possibilities left. The saturation based algorithm pre-
sented in Section 3.3 takes this idea a bit further, basing the choice
of the next vertex on how many colors have been ruled out for each
vertex.

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

	Chapter 1. Integers and variables
	1.1. ASTs and the P0 subset of Python
	1.2. Understand the meaning of P0
	1.3. Write recursive functions
	1.4. Learn the x86 assembly language
	1.5. Flatten expressions
	1.6. Select instructions

	Chapter 2. Parsing
	2.1. Lexical analysis
	2.2. Background on CFGs and the P0 grammar.
	2.3. Generating parsers with PLY
	2.4. The LALR(1) algorithm
	2.4.1. Parse table generation
	2.4.2. Resolving conflicts with precedence declarations

	Chapter 3. Register allocation
	3.1. Liveness analysis
	3.2. Building the interference graph
	3.3. Color the interference graph by playing Sudoku
	3.4. Generate spill code
	3.5. Assign homes and remove trivial moves
	3.6. Read more about register allocation

	Chapter 4. Data types and polymorphism
	4.1. Syntax of P1
	4.2. Semantics of P1
	4.3. New Python AST classes
	4.4. Compiling polymorphism
	4.5. The explicate pass
	4.6. Type checking the explicit AST
	4.7. Update expression flattening
	4.8. Update instruction selection
	4.9. Update register allocation
	4.10. Removing structured control flow
	4.11. Updates to print x86

	Chapter 5. Functions
	5.1. Syntax of P2
	5.2. Semantics of P2
	5.3. Overview of closure conversion
	5.4. Overview of heapifying variables
	5.4.1. Discussion

	5.5. Compiler implementation
	5.5.1. The Uniquify Variables Pass
	5.5.2. The Explicate Operations Pass
	5.5.3. The Heapify Variables Pass
	5.5.4. The Closure Conversion Pass
	5.5.5. The Flatten Expressions Pass
	5.5.6. The Select Instructions Pass
	5.5.7. The Register Allocation Pass
	5.5.8. The Print x86 Pass

	Chapter 6. Objects
	6.1. Syntax of P3
	6.2. Semantics of P3
	6.2.1. Inheritance
	6.2.2. Objects
	6.2.3. If and While Statements

	6.3. Compiling Classes and Objects
	6.3.1. Compiling empty class definitions and class attributes
	6.3.2. Compiling class definitions
	6.3.3. Compiling objects
	6.3.4. Compiling bound and unbound method calls

	Appendix
	6.4. x86 Instruction Reference

	Bibliography

