
CHAPTER 2

Parsing

The main ideas covered in this chapter are
lexical analysis: the identification of tokens (i.e., words) with-

in sequences of characters.
parsing: the identification of sentence structure within sequen-

ces of tokens.
In general, the syntax of the source code for a language is called

its concrete syntax. The concrete syntax of P0 specifies which pro-
grams, expressed as sequences of characters, are P0 programs. The
process of transforming a program written in the concrete syntax
(a sequence of characters) into an abstract syntax tree is traditionally
subdivided into two parts: lexical analysis (often called scanning) and
parsing. The lexical analysis phase translates the sequence of charac-
ters into a sequence of tokens, where each token consists of several
characters. The parsing phase organizes the tokens into a parse tree
as directed by the grammar of the language and then translates the
parse tree into an abstract syntax tree.

It is feasible to implement a compiler without doing lexical anal-
ysis, instead just parsing. However, scannerless parsers tend to be
slower, which mattered back when computers were slow, and some-
times still matters for very large files.

The Python Lex-Yacc tool, abbreviated PLY [2], is an easy-to-
use Python imitation of the original lex and yacc C programs. Lex
was written by Eric Schmidt and Mike Lesk [14] at Bell Labs, and
is the standard lexical analyzer generator on many Unix systems.
YACC stands from Yet Another Compiler Compiler and was orig-
inally written by Stephen C. Johnson at AT&T [12]. The PLY tool
combines the functionality of both lex and yacc. In this chapter we
will use the PLY tool to generate a lexer and parser for the P0 subset
of Python.

2.1. Lexical analysis

The lexical analyzer turns a sequence of characters (a string) into
a sequence of tokens. For example, the string

13

14 2. PARSING

’print 1 + 3’

will be converted into the list of tokens

[’print’,’1’,’+’,’3’]

Actually, to be more accurate, each token will contain the token type

and the token’s value, which is the string from the input that matched
the token.

With the PLY tool, the types of the tokens must be specified by
initializing the tokens variable. For example,

tokens = (’PRINT’,’INT’,’PLUS’)

To construct the lexical analyzer, we must specify which sequences
of characters will map to each type of token. We do this specification
using regular expressions. The term “regular” comes from “regular
languages”, which are the (particularly simple) class of languages
that can be recognized by a finite automaton. A “language” is a set
of strings. A regular expression is a pattern formed of the following
core elements:

(1) a character, e.g. a. The only string that matches this regular
expression is ’a’.

(2) two regular expressions, one followed by the other (concate-
nation), e.g. bc. The only string that matches this regular
expression is ’bc’.

(3) one regular expression or another (alternation), e.g. a|bc.
Both the string ’a’ and ’bc’ would be matched by this pat-
tern (i.e., the language described by the regular expression
a|bc consists of the strings ’a’ and ’bc’).

(4) a regular expression repeated zero or more times (Kleene
closure), e.g. (a|bc)*. The string ’bcabcbc’ would match
this pattern, but not ’bccba’.

(5) the empty sequence (epsilon)
The Python support for regular expressions goes beyond the core

elements and includes many other convenient short-hands, for ex-
ample + is for repetition one or more times. If you want to refer
to the actual character +, use a backslash to escape it. Section 4.2.1
Regular Expression Syntax of the Python Library Reference gives an
in-depth description of the extended regular expressions supported
by Python.

Normal Python strings give a special interpretation to backslashes,
which can interfere with their interpretation as regular expressions.
To avoid this problem, use Python’s raw strings instead of normal

http://docs.python.org/lib/re-syntax.html
http://docs.python.org/lib/re-syntax.html

2.1. LEXICAL ANALYSIS 15

strings by prefixing the string with an r. For example, the following
specifies the regular expression for the ’PLUS’ token.

t_PLUS = r’\+’

The t_ is a naming convention that PLY uses to know when you are
defining the regular expression for a token.

Sometimes you need to do some extra processing for certain kinds
of tokens. For example, for the INT token it is nice to convert the
matched input string into a Python integer. With PLY you can do
this by defining a function for the token. The function must have the
regular expression as its documentation string and the body of the
function should overwrite in the value field of the token. Here’s how
it would look for the INT token. The \d regular expression stands for
any decimal numeral (0-9).

def t_INT(t):

r’\d+’

try:

t.value = int(t.value)

except ValueError:

print "integer value too large", t.value

t.value = 0

return t

In addition to defining regular expressions for each of the tokens,
you’ll often want to perform special handling of newlines and white-
space. The following is the code for counting newlines and for telling
the lexer to ignore whitespace. (Python has complex rules for deal-
ing with whitespace that we’ll ignore for now.)

def t_newline(t):

r’\n+’

t.lexer.lineno += len(t.value)

t_ignore = ’ \t’

If a portion of the input string is not matched by any of the to-
kens, then the lexer calls the error function that you provide. The
following is an example error function.

def t_error(t):

print "Illegal character ’%s’" % t.value[0]

t.lexer.skip(1)

Last but not least, you’ll need to instruct PLY to generate the lexer
from your specification with the following code.

16 2. PARSING

import ply.lex as lex

lex.lex()

Figure 1 shows the complete code for an example lexer.

tokens = (’PRINT’,’INT’,’PLUS’)

t_PRINT = r’print’

t_PLUS = r’\+’

def t_INT(t):

r’\d+’

try:

t.value = int(t.value)

except ValueError:

print "integer value too large", t.value

t.value = 0

return t

t_ignore = ’ \t’

def t_newline(t):

r’\n+’

t.lexer.lineno += t.value.count("\n")

def t_error(t):

print "Illegal character ’%s’" % t.value[0]

t.lexer.skip(1)

import ply.lex as lex

lex.lex()

FIGURE 1. Example lexer implemented using the PLY
lexer generator.

EXERCISE 2.1. Write a PLY lexer specification for P0 and test it on
a few input programs, looking at the output list of tokens to see if
they make sense.

2.2. Background on CFGs and the P0 grammar.

A context-free grammar (CFG) consists of a set of rules (also called
productions) that describes how to categorize strings of various forms.

2.2. BACKGROUND ON CFGS AND THE P0 GRAMMAR. 17

Context-free grammars specify a class of languages known as context-
free languages (like regular expressions specify regular languages).
There are two kinds of categories, terminals and non-terminals in a
context-free grammar. The terminals correspond to the tokens from
the lexical analysis. Non-terminals are used to categorize different
parts of a language, such as the distinction between statements and
expressions in Python and C. The term symbol refers to both termi-
nals and non-terminals. A grammar rule has two parts, the left-hand
side is a non-terminal and the right-hand side is a sequence of zero
or more symbols. The notation ::= is used to separate the left-hand
side from the right-hand side. The following is a rule that could be
used to specify the syntax for an addition operator.

(1) expression ::= expression PLUS expression

This rule says that if a string can be divided into three parts, where
the first part can be categorized as an expression, the second part is
the PLUS terminal (token), and the third part can be categorized as
an expression, then the entire string can be categorized as an expres-
sion. The next example rule has the terminal INT on the right-hand
side and says that a string that is categorized as an integer (by the
lexer) can also be categorized as an expression. As is apparent here,
a string can be categorized by more than one non-terminal.

(2) expression ::= INT

To parse a string is to determine how the string can be catego-
rized according to a given grammar. Suppose we have the string
“1 + 3”. Both the 1 and the 3 can be categorized as expressions us-
ing rule 2. We can then use rule 1 to categorize the entire string as an
expression. A parse tree is a good way to visualize the parsing pro-
cess. (You will be tempted to confuse parse trees and abstract syntax
trees. There is a close correspondence, but the excellent students
will carefully study the difference to avoid this confusion.) A parse
tree for “1 + 3” is shown in Figure 2. The best way to start drawing
a parse tree is to first list the tokenized string at the bottom of the
page. These tokens correspond to terminals and will form the leaves
of the parse tree. You can then start to categorize non-terminals, or
sequences of non-terminals, using the parsing rules. For example,
we can categorize the integer “1” as an expression using rule (2), so
we create a new node above “1”, label the node with the left-hand
side terminal, in this case expression, and draw a line down from
the new node down to “1”. As an optional step, we can record which
rule we used in parenthesis after the name of the terminal. We then

18 2. PARSING

repeat this process until all of the leaves have been connected into a
single tree, or until no more rules apply.

"1" : INT "+" : PLUS "3" : INT

expression (rule 2) expression (rule 2)

expression (rule 1)

FIGURE 2. The parse tree for “1 + 3”.

Exhibiting a parse tree for a string validates that it is in the lan-
guage described by the context-free grammar in question. If there
can be more than one parse tree for the same string, then the gram-
mar is ambiguous. For example, the string “1 + 2 + 3” can be parsed
two different ways using rules 1 and 2, as shown in Figure 3. In Sec-
tion 2.4.2 we’ll discuss ways to avoid ambiguity through the use of
precedence levels and associativity.

"1" : INT "+" : PLUS "2" : INT

expression (rule 2) expression (rule 2)

expression (rule 1)

"3" : INT"+" : PLUS

expression (rule 2)

expression (rule 1)

"1" : INT "+" : PLUS "2" : INT

expression (rule 2) expression (rule 2)

expression (rule 1)

"3" : INT"+" : PLUS

expression (rule 2)

expression (rule 1)

FIGURE 3. Two parse trees for “1 + 2 + 3”.

The process described above for creating a parse-tree was “bottom-
up”. We started at the leaves of the tree and then worked back up to
the root. An alternative way to build parse-trees is the “top-down”
derivation approach. This approach is not a practical way to parse
a particular string but it is helpful for thinking about all possible
strings that are in the language described by the grammar. To per-
form a derivation, start by drawing a single node labeled with the
starting non-terminal for the grammar. This is often the program

non-terminal, but in our case we simply have expression. We then
select at random any grammar rule that has expression on the left-
hand side and add new edges and nodes to the tree according to
the right-hand side of the rule. The derivation process then repeats
by selecting another non-terminal that does not yet have children.
Figure 4 shows the process of building a parse tree by derivation.
A left-most derivation is one in which the left-most non-terminal is

2.3. GENERATING PARSERS WITH PLY 19

always chosen as the next non-terminal to expand. A right-most

derivation is one in which the right-most non-terminal is always
chosen as the next non-terminal to expand. The derivation in Fig-
ure 4 is a right-most derivation.

expression (rule 2)

"+" : PLUS

expression expression

expression (rule 1)expression

"+" : PLUS

expression

expression (rule 1)

"3" : INT "1" : INT "+" : PLUS "3" : INT

expression (rule 2) expression (rule 2)

expression (rule 1)

FIGURE 4. Building a parse-tree by derivation.

For each subset of Python in this course, we will specify which
language features are in a given subset of Python using context-free
grammars. The notation we’ll use for grammars is Extended Backus-
Naur Form (EBNF). The grammar for P0 is shown in Figure 5. Any
symbol not appearing on the left-hand side of a rule is a terminal
(e.g., name and decimalinteger). For simple terminals consisting of
single strings, we simply use the string and avoid giving names to
them (e.g., "+"). This notation does not correspond exactly to the no-
tation for grammars used by PLY, but it should not be too difficult for
the reader to figure out the PLY grammar given the EBNF grammar.

program ::= module

module ::= simple_statement+

simple_statement ::= "print" expression

| name "=" expression

| expression

expression ::= name

| decimalinteger

| "-" expression

| expression "+" expression

| "(" expression ")"

| "input" "(" ")"

FIGURE 5. Context-free grammar for the P0 subset of Python.

2.3. Generating parsers with PLY

Figure 6 shows an example use of PLY to generate a parser. The
code specifies a grammar and it specifies actions for each rule. For
each grammar rule there is a function whose name must begin with
p_. The document string of the function contains the specification of
the grammar rule. PLY uses just a colon : instead of the usual ::=

http://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
http://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form

20 2. PARSING

to separate the left and right-hand sides of a grammar production.
The left-hand side symbol for the first function (as it appears in the
Python file) is considered the start symbol. The body of these func-
tions contains code that carries out the action for the production.

Typically, what you want to do in the actions is build an abstract
syntax tree, as we do here. The parameter t of the function con-
tains the results from the actions that were carried out to parse the
right-hand side of the production. You can index into t to access
these results, starting with t[1] for the first symbol of the right-hand
side. To specify the result of the current action, assign the result into
t[0]. So, for example, in the production expression : INT, we build
a Const node containing an integer that we obtain from t[1], and we
assign the Const node to t[0].

from compiler.ast import Printnl, Add, Const

def p_print_statement(t):

’statement : PRINT expression’

t[0] = Printnl([t[2]], None)

def p_plus_expression(t):

’expression : expression PLUS expression’

t[0] = Add((t[1], t[3]))

def p_int_expression(t):

’expression : INT’

t[0] = Const(t[1])

def p_error(t):

print "Syntax error at ’%s’" % t.value

import ply.yacc as yacc

yacc.yacc()

FIGURE 6. First attempt at writing a parser using PLY.

The PLY parser generator takes your grammar and generates a
parser that uses the LALR(1) shift-reduce algorithm, which is the
most common parsing algorithm in use today. LALR(1) stands for
Look Ahead Left-to-right with Rightmost-derivation and 1 token of
lookahead. Unfortunately, the LALR(1) algorithm cannot handle all
context-free grammars, so sometimes you will get error messages
from PLY. To understand these errors and know how to avoid them,
you have to know a little bit about the parsing algorithm.

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

2.4. THE LALR(1) ALGORITHM 21

2.4. The LALR(1) algorithm

To understand the error messages of PLY, one needs to under-
stand the underlying parsing algorithm. The LALR(1) algorithm
uses a stack and a finite automaton. Each element of the stack is
a pair: a state number and a symbol. The symbol characterizes the
input that has been parsed so-far and the state number is used to
remember how to proceed once the next symbol-worth of input has
been parsed. Each state in the finite automaton represents where the
parser stands in the parsing process with respect to certain grammar
rules. Figure 7 shows an example LALR(1) parse table generated by
PLY for the grammar specified in Figure 6. When PLY generates a
parse table, it also outputs a textual representation of the parse table
to the file parser.out which is useful for debugging purposes.

Consider state 1 in Figure 7. The parser has just read in a PRINT

token, so the top of the stack is (1,PRINT). The parser is part of the
way through parsing the input according to grammar rule 1, which
is signified by showing rule 1 with a dot after the PRINT token and
before the expression non-terminal. A rule with a dot in it is called
an item. There are several rules that could apply next, both rule 2
and 3, so state 1 also shows those rules with a dot at the beginning
of their right-hand sides. The edges between states indicate which
transitions the automaton should make depending on the next input
token. So, for example, if the next input token is INT then the parser
will push INT and the target state 4 on the stack and transition to
state 4. Suppose we are now at the end of the input. In state 4 it
says we should reduce by rule 3, so we pop from the stack the same
number of items as the number of symbols in the right-hand side
of the rule, in this case just one. We then momentarily jump to the
state at the top of the stack (state 1) and then follow the goto edge
that corresponds to the left-hand side of the rule we just reduced by,
in this case expression, so we arrive at state 3. (A slightly longer
example parse is shown in Figure 7.)

In general, the shift-reduce algorithm works as follows. Look at
the next input token.

• If there there is a shift edge for the input token, push the
edge’s target state and the input token on the stack and pro-
ceed to the edge’s target state.
• If there is a reduce action for the input token, pop k ele-

ments from the stack, where k is the number of symbols in
the right-hand side of the rule being reduced. Jump to the
state at the top of the stack and then follow the goto edge

22 2. PARSING

State 0
start ::= . statement
statement ::= . PRINT expression

State 1
statement ::= PRINT . expression
expression ::= . expression PLUS expression
expression ::= . INT

PRINT, shift

State 2
start ::= statement .

statement, goto

State 3
statement ::=PRINT expression .
expression ::= expression . PLUS expression

end, reduce by rule 1

State 4
expression ::= INT .

end, reduce by rule 3
PLUS, reduce by rule 3

INT, shift expression, goto

State 5
expression ::= expression PLUS . expression
expression ::= . expression PLUS expression
expression ::= . INT

INT, shift PLUS, shift
State 6
expression ::= expression PLUS expression .
expression ::= expression . PLUS expression

end, reduce by rule 2
PLUS, reduce by rule 2

expression, gotoPLUS, shift

Grammar:
0. start ::= statement
1. statement ::= PRINT expression
2. expression ::= expression PLUS expression
3. expression ::= INT

Example parse of 'print 1 + 2'
Stack
[]
[(1,PRINT)]
[(1,PRINT),(4,INT)]
[(1,PRINT),(3,expression)]
[(1,PRINT),(3,expression),(5,+)]
[(1,PRINT),(3,expression),(5,+),(4,INT)]
[(1,PRINT),(3,expression),(5,+),(6,expression)]
[(1,PRINT),(3,expression)]
[(2,statement)]

Input
'print 1 + 2'
'1 + 2'
'+ 2'
'+ 2'
'2'
''
''
''
''

Action
shift to state 1
shift to state 4
reduce by rule 3 to state 1, goto 3
shift to state 5
shift to state 4
reduce by rule 3 to state 5, goto 6
reduce by rule 2 to state 1, goto 3
reduce by rule 1 to state 0, goto 2
accept

FIGURE 7. An LALR(1) parse table and a trace of an
example run.

for the non-terminal that matches the left-hand side of the
rule we’re reducing by. Push the edge’s target state and the
non-terminal on the stack.

Notice that in state 6 of Figure 7 there is both a shift and a reduce
action for the token PLUS, so the algorithm does not know which ac-
tion to take in this case. When a state has both a shift and a reduce
action for the same token, we say there is a shift/reduce conflict. In this
case, the conflict will arise, for example, when trying to parse the in-
put print 1 + 2 + 3. After having consumed print 1 + 2 the parser
will be in state 6, and it will not know whether to reduce to form

Bor-Yuh Evan Chang

2.4. THE LALR(1) ALGORITHM 23

an expression of 1 + 2, or whether it should proceed by shifting the
next + from the input.

A similar kind of problem, known as a reduce/reduce conflict, arises
when there are two reduce actions in a state for the same token.
To understand which grammars gives rise to shift/reduce and re-
duce/reduce conflicts, it helps to know how the parse table is gener-
ated from the grammar, which we discuss next.

2.4.1. Parse table generation. The parse table is generated one
state at a time. State 0 represents the start of the parser. We add
the production for the start symbol to this state with a dot at the
beginning of the right-hand side. If the dot appears immediately
before another non-terminal, we add all the productions with that
non-terminal on the left-hand side. Again, we place a dot at the be-
ginning of the right-hand side of each the new productions. This
process called state closure is continued until there are no more pro-
ductions to add. We then examine each item in the current state I .
Suppose an item has the form A ::= α.Xβ, where A and X are sym-
bols and α and β are sequences of symbols. We create a new state,
call it J . IfX is a terminal, we create a shift edge from I to J , whereas
if X is a non-terminal, we create a goto edge from I to J . We then
need to add some items to state J . We start by adding all items from
state I that have the form B ::= γ.Xκ (where B is any symbol and γ
and κ are arbitrary sequences of symbols), but with the dot moved
past the X . We then perform state closure on J . This process repeats
until there are no more states or edges to add.

We then mark states as accepting states if they have an item that
is the start production with a dot at the end. Also, to add in the
reduce actions, we look for any state containing an item with a dot
at the end. Let n be the rule number for this item. We then put a
reduce n action into that state for every token Y . For example, in
Figure 7 state 4 has an item with a dot at the end. We therefore put
a reduce by rule 3 action into state 4 for every token. (Figure 7 does
not show a reduce rule for INT in state 4 because this grammar does
not allow two consecutive INT tokens in the input. We will not go
into how this can be figured out, but in any event it does no harm to
have a reduce rule for INT in state 4; it just means the input will be
rejected at a later point in the parsing process.)

EXERCISE 2.2. On a piece of paper, walk through the parse ta-
ble generation process for the grammar in Figure 6 and check your
results against Figure 7.

24 2. PARSING

2.4.2. Resolving conflicts with precedence declarations. To solve
the shift/reduce conflict in state 6, we can add the following prece-
dence rule, which says addition associates to the left and takes prece-
dence over printing. This will cause state 6 to choose reduce over
shift.

precedence = (

(’nonassoc’,’PRINT’),

(’left’,’PLUS’)

)

In general, the precedence variable should be assigned a tuple of
tuples. The first element of each inner tuple should be an associa-
tivity (nonassoc, left, or right) and the rest of the elements should
be tokens. The tokens that appear in the same inner tuple have the
same precedence, whereas tokens that appear in later tuples have a
higher precedence. Thus, for the typical precedence for arithmetic
operations, we would specify the following:

precedence = (

(’left’,’PLUS’,’MINUS’),

(’left’,’TIMES’,’DIVIDE’)

)

Figure 8 shows the Python code for generating a lexer and parser
using PLY.

EXERCISE 2.3. Write a PLY grammar specification for P0 and up-
date your compiler so that it uses the generated lexer and parser
instead of using the parser in the compiler module. In addition to
handling the grammar in Figure 5, you also need to handle Python-
style comments, everything following a # symbol up to the newline
should be ignored. Perform regression testing on your compiler to
make sure that it still passes all of the tests that you created for P0.

2.4. THE LALR(1) ALGORITHM 25

Lexer
tokens = (’PRINT’,’INT’,’PLUS’)

t_PRINT = r’print’

t_PLUS = r’\+’

def t_INT(t):

r’\d+’

try:

t.value = int(t.value)

except ValueError:

print "integer value too large", t.value

t.value = 0

return t

t_ignore = ’ \t’

def t_newline(t):

r’\n+’

t.lexer.lineno += t.value.count("\n")

def t_error(t):

print "Illegal character ’%s’" % t.value[0]

t.lexer.skip(1)

import ply.lex as lex

lex.lex()

Parser
from compiler.ast import Printnl, Add, Const

precedence = (

(’nonassoc’,’PRINT’),

(’left’,’PLUS’)

)

def p_print_statement(t):

’statement : PRINT expression’

t[0] = Printnl([t[2]], None)

def p_plus_expression(t):

’expression : expression PLUS expression’

t[0] = Add((t[1], t[3]))

def p_int_expression(t):

’expression : INT’

t[0] = Const(t[1])

def p_error(t):

print "Syntax error at ’%s’" % t.value

import ply.yacc as yacc

yacc.yacc()

FIGURE 8. Example parser with precedence declara-
tions to resolve conflicts.

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

CHAPTER 3

Register allocation

In chapter 1 we simplified the generation of x86 assembly by
placing all variables on the stack. We can improve the performance
of the generated code considerably if we instead try to place as many
variables as possible into registers. The CPU can access a register in
a single cycle, whereas accessing the stack can take from several cy-
cles (to go to cache) to hundreds of cycles (to go to main memory).
Figure 1 shows a program fragment that we’ll use as a running ex-
ample. The program is almost in x86 assembly but not quite; it still
contains variables instead of stack locations or registers.

The goal of register allocation is to fit as many variables into reg-
isters as possible. It is often the case that we have more variables
than registers, so we can’t naively map each variable to a register.
Fortunately, it is also common for different variables to be needed
during different periods of time, and in such cases the variables can
be mapped to the same register. Consider variables y and z in Fig-
ure 1. After the variable z is used in addl z, x it is no longer needed.
Variable y, on the other hand, is only used after this point, so z and
y could share the same register.

movl $4, z

movl $0, w

movl $1, z

movl w, x

addl z, x

movl w, y

addl x, y

movl y, w

addl x, w

FIGURE 1. An example program in pseudo assembly
code. The program still uses variables instead of regis-
ters and stack locations.

27

28 3. REGISTER ALLOCATION

3.1. Liveness analysis

A variable whose current value is needed later on in the program
is called live.

DEFINITION 3.1. A variable is live if the variable is used at some
later point in the program and there is not an intervening assignment
to the variable.

To understand the latter condition, consider variable z in Figure 1. It
is not live immediately after the instruction movl $4, z because the
later uses of z get their value instead from the instruction movl $1,

z. The variable z is live between z = 1 and its use in addl z, x. We
have annotated the program with the set of variables that are live
between each instruction.

The live variables can be computed by traversing the instruc-
tion sequence back to front (i.e., backwards in execution order). Let
I1, . . . , In be the instruction sequence. We write Lafter(k) for the set
of live variables after instruction Ik and Lbefore(k) for the set of live
variables before instruction Ik. The live variables after an instruction
is always equal to the live variables before the next instruction.

Lafter(k) = Lbefore(k + 1)

To start things off, there are no live variables after the last instruction,
so we have

Lafter(n) = ∅
We then apply the following rule repeatedly, traversing the instruc-
tion sequence back to front.

Lbefore(k) = (Lafter(k)−W (k)) ∪R(k),

where W (k) are the variables written to by instruction Ik and R(k)
are the variables read by instruction Ik. Figure 2 shows the results of
live variables analysis for the example program from Figure 1.

Implementing the live variable analysis in Python is straightfor-
ward thanks to the built-in support for sets. You can construct a set
by first creating a list and then passing it to the set function. The
following creates an empty set:

>>> set([])

set([])

You can take the union of two sets with the | operator:
>>> set([1,2,3]) | set([3,4,5])

set([1, 2, 3, 4, 5])

To take the difference of two sets, use the - operator:

3.2. BUILDING THE INTERFERENCE GRAPH 29

movl $4, z
{}

movl $0, w
{w}

movl $1, z
{w, z}

movl w, x
{x, w, z}

addl z, x
{x, w}

movl w, y
{x, y}

addl x, y
{x, y}

movl y, w
{w, x}

addl x, w
{}

FIGURE 2. The example program annotated with the
set of live variables between each instruction.

>>> set([1,2,3]) - set([3,4,5])

set([1, 2])

Also, just like lists, you can use Python’s for loop to iterate through
the elements of a set:

>>> for x in set([1,2,2,3]):

... print x

1

2

3

3.2. Building the interference graph

Based on the liveness analysis, we know the program regions
where each variable is needed. However, during register allocation,
we’ll need to answer questions of the specific form: are variables u
and v ever live at the same time? (And therefore can’t be assigned
to the same register.) To make this question easier to answer, we cre-
ate an explicit data structure, an interference graph. An interference
graph is an undirected graph that has an edge between two vari-
ables if they are live at the same time, that is, if they interfere with
each other.

30 3. REGISTER ALLOCATION

x

yz

w

FIGURE 3. Interference graph for the example program.

The most obvious way to compute the interference graph is to
look at the set of live variables between each statement in the pro-
gram, and add an edge to the graph for every pair of variables in the
same set. This approach is less than ideal for two reasons. First, it
can be rather expensive because it takes O(n2) time to look at every
pair in a set of n live variables. Second, there’s a special case in which
two variables that are live at the same time don’t actually interfere
with each other: when they both contain the same value.

A better way to compute the edges of the intereference graph is
given by the following rules.

• If instruction Ik is a move: movl s, t, then add the edge (t, v)
for every v ∈ Lafter(k) unless v = t or v = s.
• If instruction Ik is not a move but some other arithmetic in-

struction such as addl s, t, then add the edge (t, v) for every
v ∈ Lafter(k) unless v = t.
• If instruction Ik is of the form call label , then add an edge

(r, v) for every caller-save register r and every variable v ∈
Lafter(k). (The caller-save registers are eax, ecx, and edx.)

Working from the top to bottom of Figure 2, z interferes with w

and x, w interferes with x, and y interferes with x. In the second to
last statement, we see that w interferes with x, but we already know
that. The resulting interference graph is shown in Figure 3.

In Python, a convenient representation for graphs is to use a dic-
tionary that maps nodes to a set of adjacent nodes. So for the inter-
ference graph, the dictionary would map variable names to sets of
variable names.

Consider the first instruction in Figure 2, movl $4, z. The Lafter

set for this instruction is the empty set, in particular, z is not live
which means that this movl is useless, or in compiler lingo, it’s dead.
It is tempting to remove dead instructions during the construction
of the interference graph, but in general, it’s better to keep each
pass focused on just one job, making it easier to debug and main-
tain the code. A more principled approach is to insert a pass after

3.3. COLOR THE INTERFERENCE GRAPH BY PLAYING SUDOKU 31

liveness analysis that removes dead instructions. Also, removing
dead instructions may cause more instructions to become dead, so
one could iterate the liveness analysis and dead-code removal passes
until there is no more dead code to remove. However, to really
do dead-code elimination right, one should combine it with several
other optimizations, such as constant propagation, constant folding,
and procedure inlining [22]. This combination of optimizations is a
good choice of topic for your final project.

3.3. Color the interference graph by playing Sudoku

We now come to the main event, mapping variables to registers
(or to stack locations in the event that we run out of registers). We
need to make sure not to map two variables to the same register if the
two variables interfere with each other. In terms of the interference
graph, this means we cannot map adjacent nodes to the same regis-
ter. If we think of registers as colors, the register allocation problem
becomes the widely-studied graph coloring problem [1, 17].

The reader may actually be more familar with the graph coloring
problem then he or she realizes; the popular game of Sudoku is an
instance of graph coloring. The following describes how to build a
graph out of a Sudoku board.

• There is one node in the graph for each Sudoku square.
• There is an edge between two nodes if the corresponding

squares are in the same row or column, or if the squares are
in the same 3× 3 region.
• Choose nine colors to correspond to the numbers 1 to 9.
• Based on the initial assignment of numbers to squares in the

Sudoku board, assign the corresponding colors to the corre-
sponding nodes in the graph.

If you can color the remaining nodes in the graph with the nine col-
ors, then you’ve also solved the corresponding game of Sudoku.

Given that Sudoku is graph coloring, one can use Sudoku strate-
gies to come up with an algorithm for allocating registers. For exam-
ple, one of the basic techniques for Sudoku is Pencil Marks. The idea
is that you use a process of elimination to determine what numbers
still make sense for a square, and write down those numbers in the
square (writing very small). At first, each number might be a pos-
sibility, but as the board fills up, more and more of the possibilities
are crossed off (or erased). For example, if the number 1 is assigned
to a square, then by process of elimination, you can cross off the 1

32 3. REGISTER ALLOCATION

pencil mark from all the squares in the same row, column, and re-
gion. Many Sudoku computer games provide automatic support for
Pencil Marks. This heuristic also reduces the degree of branching in
the search tree.

The Pencil Marks technique corresponds to the notion of color
saturation due to Brélaz [3]. The saturation of a node, in Sudoku
terms, is the number of possibilities that have been crossed off using
the process of elimination mentioned above. In graph terminology,
we have the following definition:

saturation(u) = |{c | ∃v.v ∈ Adj(u) and color(v) = c}|
where Adj(u) is the set of nodes adjacent to u and the notation |S|
stands for the size of the set S.

Using the Pencil Marks technique leads to a simple strategy for
filling in numbers: if there is a square with only one possible num-
ber left, then write down that number! But what if there aren’t any
squares with only one possibility left? One brute-force approach is to
just make a guess. If that guess ultimately leads to a solution, great.
If not, backtrack to the guess and make a different guess. Of course,
this is horribly time consuming. One standard way to reduce the
amount of backtracking is to use the most-constrained-first heuris-
tic. That is, when making a guess, always choose a square with the
fewest possibilities left (the node with the highest saturation). The
idea is that choosing highly constrained squares earlier rather than
later is better because later there may not be any possibilities left.

In some sense, register allocation is easier than Sudoku because
we can always cheat and add more numbers by spilling variables to
the stack. Also, we’d like to minimize the time needed to color the
graph, and backtracking is expensive. Thus, it makes sense to keep
the most-constrained-first heuristic but drop the backtracking in fa-
vor of greedy search (guess and just keep going). Figure 4 gives the
pseudo-code for this simple greedy algorithm for register allocation
based on saturation and the most-constrained-first heuristic, which
is roughly equivalent to the DSATUR algorithm of Brélaz [3] (also
known as saturation degree ordering (SDO) [7, 15]). Just as in Su-
doku, the algorithm represents colors with integers, with the first k
colors corresponding to the k registers in a given machine and the
rest of the integers corresponding to stack locations.

3.4. Generate spill code

In this pass we need to adjust the program to take into account
our decisions regarding the locations of the local variables. Recall

3.4. GENERATE SPILL CODE 33

Algorithm: DSATUR
Input: the inference graph G
Output: an assignment color(v) for each node v ∈ G

W ← vertices(G)
while W 6= ∅ do

pick a node u from W with the highest saturation,
breaking ties randomly

find the lowest color c that is not in {color(v) | v ∈ Adj(v)}
color(u) = c
W ← W − {u}

FIGURE 4. Saturation-based greedy graph coloring algorithm.

that x86 assembly only allows one operand per instruction to be a
memory access. For instance, suppose we have a move movl y, x

where x and y are assigned to different memory locations on the
stack. We need to replace this instruction with two instructions, one
that moves the contents of y into a register and then another instruc-
tion that moves the register’s contents into x. But what register? We
could reserve a register for this purpose, and use the same register
for every move between two stack locations. However, that would
decrease the number of registers available for other uses, sometimes
requiring the allocator to spill more variables.

Instead, we recommend creating a new temporary variable (not
yet assigned to a register or stack location) and rerunning the register
allocator on the new program, where movl y, x is replaced by

movl y, tmp0

movl tmp0, x

The tmp0 variable will have a very short live range, so it does not
make the overall graph coloring problem harder to solve. How-
ever, to prevent tmp0 from being spilled and then needing yet an-
other temporary, we recommend marking tmp0 as “unspillable” and
changing the graph coloring algorithm with respect to how it picks
the next node. Instead of breaking ties randomly between nodes
with equal saturation, give preference to nodes marked as unspill-
able.

If you did not need to introduce any new temporaries, then reg-
ister allocation is complete. Otherwise, you need to go back and do

34 3. REGISTER ALLOCATION

another iteration of live variable analysis, graph building, graph col-
oring, and generating spill code. When you start the next iteration,
do not start from scratch; keep the spill decisions, that is, which vari-
ables are spilled and their assigned stack locations, but redo the allo-
cation for the new temporaries and the variables that were assigned
to registers.

3.5. Assign homes and remove trivial moves

Once the register allocation algorithm has settled on a coloring,
update the program by replacing variables with their homes: reg-
isters or stack locations. In addition, delete trivial moves. That is,
wherever you have a move between two variables, such as

movl y, x

where x and y have been assigned to the same location (register or
stack location), delete the move instruction.

EXERCISE 3.1. Update your compiler to perform register alloca-
tion. Test your updated compiler on your suite of test cases to make
sure you haven’t introduced bugs. The suggested organization of
your compiler is shown in Figure 7. What is the time complexity
of your register allocation algorithm? If it is greater than O(n log n),
find a way to make it O(n log n), where n is the number of variables
in the program.

3.6. Read more about register allocation

The general graph coloring problem is NP-complete [6], so find-
ing an optimal coloring (fewest colors) takes exponential time (for
example, by using a backtracking algorithm). However, there are
many algorithms for finding good colorings and the search for even
better algorithms is an ongoing area of research. The most widely
used coloring algorithm for register allocation is the classic algo-
rithm of Chaitin [5]. Briggs describes several improvements to the
classic algorithm [4]. Numerous others have also made refinements
and proposed alternative algorithms. The interested reader can google
“register allocation”.

More recently, researchers have noticed that the interference graphs
that arise in compilers using static single-assignment form have a
special property, they are chordal graphs. This property allows a
simple algorithm to find optimal colorings [8]. Furthermore, even if
the compiler does not use static single-assignment form, many inter-
ference graphs are either chordal or nearly chordal [16].

Bor-Yuh Evan Chang

3.6. READ MORE ABOUT REGISTER ALLOCATION 35

Select
InstructionsLex & Parse Python AST

Python File

x86 Assembly File

Flat
Python AST

Flatten
Expressions

Build Interefence
GraphColor the Graph

Introduce Spill
Code Assign Homes Print x86

x86 IR

x86 IR
+ graph

x86 IR
+ coloring

x86 IR x86 IR

Liveness
Analysis

x86 IR
+ liveness

FIGURE 5. Suggested organization of the compiler.

The chordal graph coloring algorithm consists of putting two
standard algorithms together. The first algorithm orders the nodes
so that that the next node in the sequence is always the node that is
adjacent to the most nodes further back in the sequence. This algo-
rithm is called the maximum cardinality search algorithm (MCS) [18].
The second algorithm is the greedy coloring algorithm, which sim-
ply goes through the sequence of nodes produced by MCS and as-
signs a color to each node. The ordering produced by the MCS is
similar to the most-constrained-first heuristic: if you’ve already col-
ored many of the neighbors of a node, then that node likely does
not have many possibilities left. The saturation based algorithm pre-
sented in Section 3.3 takes this idea a bit further, basing the choice
of the next vertex on how many colors have been ruled out for each
vertex.

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

	Chapter 1. Integers and variables
	1.1. ASTs and the P0 subset of Python
	1.2. Understand the meaning of P0
	1.3. Write recursive functions
	1.4. Learn the x86 assembly language
	1.5. Flatten expressions
	1.6. Select instructions

	Chapter 2. Parsing
	2.1. Lexical analysis
	2.2. Background on CFGs and the P0 grammar.
	2.3. Generating parsers with PLY
	2.4. The LALR(1) algorithm
	2.4.1. Parse table generation
	2.4.2. Resolving conflicts with precedence declarations

	Chapter 3. Register allocation
	3.1. Liveness analysis
	3.2. Building the interference graph
	3.3. Color the interference graph by playing Sudoku
	3.4. Generate spill code
	3.5. Assign homes and remove trivial moves
	3.6. Read more about register allocation

	Chapter 4. Data types and polymorphism
	4.1. Syntax of P1
	4.2. Semantics of P1
	4.3. New Python AST classes
	4.4. Compiling polymorphism
	4.5. The explicate pass
	4.6. Type checking the explicit AST
	4.7. Update expression flattening
	4.8. Update instruction selection
	4.9. Update register allocation
	4.10. Removing structured control flow
	4.11. Updates to print x86

	Chapter 5. Functions
	5.1. Syntax of P2
	5.2. Semantics of P2
	5.3. Overview of closure conversion
	5.4. Overview of heapifying variables
	5.4.1. Discussion

	5.5. Compiler implementation
	5.5.1. The Uniquify Variables Pass
	5.5.2. The Explicate Operations Pass
	5.5.3. The Heapify Variables Pass
	5.5.4. The Closure Conversion Pass
	5.5.5. The Flatten Expressions Pass
	5.5.6. The Select Instructions Pass
	5.5.7. The Register Allocation Pass
	5.5.8. The Print x86 Pass

	Chapter 6. Objects
	6.1. Syntax of P3
	6.2. Semantics of P3
	6.2.1. Inheritance
	6.2.2. Objects
	6.2.3. If and While Statements

	6.3. Compiling Classes and Objects
	6.3.1. Compiling empty class definitions and class attributes
	6.3.2. Compiling class definitions
	6.3.3. Compiling objects
	6.3.4. Compiling bound and unbound method calls

	Appendix
	6.4. x86 Instruction Reference

	Bibliography

