
CHAPTER 1

Integers and variables

The main concepts in this chapter are
abstract syntax trees: Inside the compiler we represent progra-

ms with a data-structure called an abstract syntax tree (AST).
recursive functions: We analyze and manipulate abstract syn-

tax trees with recursive functions.
flattening expressions into instructions: One step in compil-

ing high-level languages to low-level languages is flattening
expressions trees into lists of instructions.

selecting instructions: The x86 assembly language offers a pe-
culiar variety of instructions, so selecting which instructions
are needed to get the job done is not always easy.

test-driven development: A compiler is a large piece of soft-
ware. To maximize our productivity (and minimize bugs!)
we use good software engineering practices, such as writing
lots of good test cases before writing code.

1.1. ASTs and the P0 subset of Python

The first subset of Python that we consider is extremely simple:
it consists of print statements, assignment statements, some integer
arithmetic, and the input() function. We call this subset P0. The
following is an example P0 program.

print - input() + input()

Programs are written one character at a time but we, as program-
mers, do not think of programs as sequences of characters. We think
about programs in chunks like if statements and for loops. These
chunks often have parts, for example, an if statement has a then-
clause and an else-clause. Inside the compiler, we often traverse
over a program one chunk at a time, going from parent chunks to
their children. A data-structure that facilitates this kind of traversal
is a tree. Each node in the tree represents a programming language
construct and each node has edges that point to its children. When
a tree is used to represent a program, we call it an abstract syntax tree

1

bec
Pencil

2 1. INTEGERS AND VARIABLES

(AST). While trees in nature grow up with their leaves at the top, we
think of ASTs as growing down with the leaves at the bottom.

Printnl

CallFunc

Add

UnarySub

CallFunc Name []

Name

nodes[0]

rightleft

node argsexpr

node

Module

Stmt
node

nodes[0]

[]

args

'input'

'input'

name

name

FIGURE 1. The abstract syntax tree for print - input() + input().

Figure 1 shows the abstract syntax tree for the previous P0 pro-
gram. There is a standard Python library that turns a sequence of
characters into an AST, using a process called parsing, which we learn
about in the next chapter. The following interaction with the Python
interpreter shows a call to the Python parser.

>>> import compiler
>>> ast = compiler.parse("print - input() + input()")
>>> ast
Module(None,

Stmt([Printnl([Add((UnarySub(CallFunc(Name(’input’),
[], None, None)),

CallFunc(Name(’input’),
[], None, None)))],

None)]))

Each node in the AST is a Python object. The objects are instances of
Python classes; there is one class for each langauge construct. In the
above interaction we invoked compiler.parse, but in your compiler
I recommend using an alternative function that takes it’s input from
a file: compiler.parseFile. Figure 2 shows the Python classes for the
AST nodes for P0. For each class, we have only listed its constructor,
the __init__ method. You can find out more about these classes by

bec
Pencil

1.2. UNDERSTAND THE MEANING OF P0 3

reading the file compiler/ast.py of the Python installation on your
computer.

To keep things simple, we place some restrictions on P0. In a
print statement, instead of multiple things to print, as in Python
2.7, you only need to support printing one thing. So you can as-
sume the nodes attribute of a Printnl node is a list containing a sin-
gle AST node. Similarly, for expression statements, you only need to
support a single expression, so you do not need to support tuples.
The P0 subset only includes basic assignments instead of the much
more general forms supported by Python 2.7. You only need to sup-
port a single variable on the left-hand-side. So the nodes attribute of
Assign is a list containing a single AssName node whose flag attribute
is OP_ASSIGN. The only kind of value allowed inside of a Const node
is an integer. P0 does not include support for Boolean values, so a P0

AST will never have a Name node whose name attribute is “True” or
“False”.

class Module(Node):

def __init__(self, doc, node):

self.doc = doc

self.node = node

class Stmt(Node):

def __init__(self, nodes):

self.nodes = nodes

class Printnl(Node):

def __init__(self, nodes, dest):

self.nodes = nodes

self.dest = dest

class Assign(Node):

def __init__(self, nodes, expr):

self.nodes = nodes

self.expr = expr

class AssName(Node):

def __init__(self, name, flags):

self.name = name

self.flags = flags

class Discard(Node):

def __init__(self, expr):

self.expr = expr

class Const(Node):

def __init__(self, value):

self.value = value

class Name(Node):

def __init__(self, name):

self.name = name

class Add(Node):

def __init__(self, (left, right)):

self.left = left

self.right = right

class UnarySub(Node):

def __init__(self, expr):

self.expr = expr

CallFunc is for calls to the ’input’ function
class CallFunc(Node):

def __init__(self, node, args):

self.node = node

self.args = args

FIGURE 2. The Python classes for representing P0 ASTs.

1.2. Understand the meaning of P0

The meaning of Python programs, that is, what happens when
you run a program, is defined in the Python Reference Manual [20].

bec
Pencil

bec
Pencil

4 1. INTEGERS AND VARIABLES

EXERCISE 1.1. Read the sections of the Python Reference Manual
that apply to P0: 3.2, 5.5, 5.6, 6.1, 6.2, and 6.6. Also read the entry for
the input function in the Python Library Reference, in section 2.1.

Sometimes it is difficult to understand the technical jargon in pro-
gramming language reference manuals. A complementary way to
learn about the meaning of Python programs is to experiment with
the standard Python interpreter. If there is an aspect of the language
that you do not understand, create a program that uses that aspect
and run it! Suppose you are not sure about a particular feature but
have a guess, a hypothesis, about how it works. Think of a program
that will produce one output if your hypothesis is correct and pro-
duce a different output if your hypothesis is incorrect. You can then
run the Python interpreter to validate or disprove your hypothesis.

For example, suppose that you are not sure what happens when
the result of an arithmetic operation results in a very large integer,
an integer too large to be stored in a machine register (> 2

31 � 1). In
the language C, integer operations wrap around, so 2⇥ 2

30 produces
�2147483648 [13]. Does the same thing happen in Python? Let us try
it and see:

>>> 2 * 2**30
2147483648L

No, the number does not wrap around! Instead, Python has two
kinds of integers: plain integers for integers in the range �2

31 to 2

31�1

and long integers for integers in a range that is only limited by the
amount of (virtual) memory in your computer. For P0 we restrict our
attention to just plain integers and say that operations that result in
integers outside of the range �2

31 to 2

31 � 1 are undefined.
The built-in Python function input() reads in a line from stan-

dard input (stdin) and then interprets the string as if it were a Python
expression, using the built-in eval function. For P0 we only require a
subset of this functionality. The input function need only deal with
integer literals. A call to the input function, of the form "input()",
is parsed into the function call AST node CallFunc. You do not need
to handle general function calls, just recognize the special case of a
function call where the function being called is named "input".

EXERCISE 1.2. Write some programs in the P0 subset of Python.
The programs should be chosen to help you understand the lan-
guage. Look for corner cases or unusual aspects of the language to
test in your programs. Later in this assignment, you will use these
programs to test your compiler, so the tests should be thorough and

http://docs.python.org/ref/types.html
http://docs.python.org/ref/unary.html
http://docs.python.org/ref/binary.html
http://docs.python.org/reference/simple_stmts.html#expression-statements
http://docs.python.org/reference/simple_stmts.html#assignment-statements
http://docs.python.org/ref/print.html
http://docs.python.org/lib/built-in-funcs.html
bec
Pencil

1.3. WRITE RECURSIVE FUNCTIONS 5

should exercise all the features of P0. If the tests are not thorough,
then your compiler may pass all your tests but still have bugs that
are caught by the automatic grader. Run your test programs using
the standard Python interpreter.

1.3. Write recursive functions

The main programming technique for analyzing and manipulat-
ing ASTs is to write recursive functions that traverse the tree. As
an example, we create a function called num_nodes that counts the
number of nodes in an AST. Figure 3 shows a schematic of how this
function works. Each triangle represents a call to num_nodes and is
responsible for counting the number of nodes in the sub-tree whose
root is the argument to num_nodes. In the figure, the largest trian-
gle is responsible for counting the number of nodes in the sub-tree
rooted at Add. The key to writing a recursive function is to be lazy!
Let the recursion do the work for you. Just process one node and let
the recursion handle the children. In Figure 3, we make the recursive
calls num_nodes(left) and num_nodes(right) to count the nodes in the
child sub-trees. All we have to do to then is to add the two numbers
and add one more to count the current node. Figure 4 shows the
definition of the num_nodes function.

Add

left right

num_nodes(Add)

num_nodes(right)num_nodes(left)

FIGURE 3. Schematic for a recursive function process-
ing an AST.

When a node has a list of children, as is the case for Stmt, a con-
venient way to process the children is to use List Comprehensions,
described in the Python Tutorial [21]. A list comprehension has the
following form

[compute for variable in list]

http://docs.python.org/tut/node7.html
bec
Pencil

6 1. INTEGERS AND VARIABLES

from compiler.ast import *

def num_nodes(n):

if isinstance(n, Module):

return 1 + num_nodes(n.node)

elif isinstance(n, Stmt):

return 1 + sum([num_nodes(x) for x in n.nodes])

elif isinstance(n, Printnl):

return 1 + num_nodes(n.nodes[0])

elif isinstance(n, Assign):

return 1 + num_nodes(n.nodes[0]) + num_nodes(n.expr)

elif isinstance(n, AssName):

return 1

elif isinstance(n, Discard):

return 1 + num_nodes(n.expr)

elif isinstance(n, Const):

return 1

elif isinstance(n, Name):

return 1

elif isinstance(n, Add):

return 1 + num_nodes(n.left) + num_nodes(n.right)

elif isinstance(n, UnarySub):

return 1 + num_nodes(n.expr)

elif isinstance(n, CallFunc):

return 1 + num_nodes(n.node)

else:

raise Exception(’Error in num_nodes: unrecognized AST node’)

FIGURE 4. Recursive function that counts the number
of nodes in an AST.

This performs the specified computation for each element in the list,
resulting in a list holding the results of the computations. For exam-
ple, in Figure 4 in the case for Stmt we write

[num_nodes(x) for x in n.nodes]

This code makes a recursive call to num_nodes for each child node
in the list n.nodes. The result of this list comprehension is a list of
numbers. The complete code for handling a Stmt node in Figure 4 is

return 1 + sum([num_nodes(x) for x in n.nodes])

As is typical in a recursive function, after making the recursive calls
to the children, there is some work left to do. We add up the number
of nodes from the children using the sum function, which is docu-
mented under Built-in Functions in the Python Library Manual [19].
We then add 1 to account for the Stmt node itself.

There are 11 if statements in the num_nodes function, one for each
kind of AST node. In general, when writing a recursive function

http://docs.python.org/lib/built-in-funcs.html

1.4. LEARN THE X86 ASSEMBLY LANGUAGE 7

over an AST, it is good to double check and make sure that you have
written one if for each kind of AST node. The raise of an exception
in the else checks that the input does not contain any other kinds of
nodes.

1.4. Learn the x86 assembly language

This section gives a brief introduction to the x86 assembly lan-
guage. There are two variations on the syntax for x86 assembly: the
Intel syntax and the AT&T syntax. Here we use the AT&T syntax,
which is accepted by the GNU Assembler and by gcc. The main
difference between the AT&T syntax and the Intel syntax is that in
AT&T syntax the destination register on the right, whereas in Intel
syntax it is on the left.

The x86 assembly language consists of hundreds of instructions
and many intricate details. However, for our purposes a tiny subset
of the language will do. The program in Figure 5 serves to give a first
taste of x86 assembly. This program is equivalent to the following
Python program, a small variation on the one we discussed earlier.

x = - input()
print x + input()

Perhaps the most obvious difference between Python and x86 is that
Python allows expressions to be nested within one another. In con-
trast, an x86 program consists of a flat sequence of instructions. An-
other difference is that x86 does not have variables. Instead, it has
a fixed set of registers that can each hold 32 bits. The registers have
funny three letter names:

eax, ebx, ecx, edx, esi, edi, ebp, esp

When referring to a register in an instruction, place a percent sign
(%) before the name of the register.

When compiling from Python to x86, we may very well have
more variables than registers. In such situations we use the stack
to store the variables. Recall that a stack is a data structure that sup-
ports pushing and popping values in a last-in-first-out (LIFO) man-
ner. In the program in Figure 5, the variable x has been mapped
to a stack location. The register esp always contains the address of
the item at the front of the stack. In addition to local variables, the
stack is also used to pass arguments in a function call. In this course
we use the cdecl convention used by the GNU C compiler. The in-
struction pushl %eax, which appears before the call to print_int_nl,
serves to put the result of the addition on the stack so that it can be

8 1. INTEGERS AND VARIABLES

accessed within the print_int_nl function. The stack grows down,
so the pushl instruction causes esp to be lowered by 4 bytes (the size
of one 32 bit integer).

Because the stack pointer, esp, is constantly changing, it would
be difficult to use esp for referring to local variables stored on the
stack. Instead, the ebp register (bp is for base pointer) is used for this
purpose.

The stack is conceptually a two-dimensional stack. We have al-
ready seen that words (32-bit values) are pushed and popped via
the stack pointer. Additionally, each function call pushes an activa-

tion record to store its local state. The function call’s activation record
is popped when the function returns. The first two instructions set
up of the activation record. In particular, the instruction pushl %ebp

saves the current value of the base pointer, that is, the base pointer of
the previous activation record. Then, the instruction movl %esp,%ebp

puts a copy of the stack pointer into ebp delineating the start of this
call’s activation record. We can then use ebp throughout the lifetime
of the call to this function to refer to local variables on the stack.
And we see that ebp points to the head of a linked-list of activation
records. In Figure 5, the value of variable x is referred to by -4(%ebp),
which is the assembly way of writing the C expression *(ebp - 4)

(the 4 is in bytes). That is, it loads the data from the address stored
in ebp minus 4 bytes.

The eax register plays a special role: functions put their return
values in eax. For example, in Figure 5, the calls to the input function
put their results in eax. It is a good idea not to put anything impor-
tant into eax before making a function call, as it will be overwritten.
In general, a function may overwrite any of the caller-save registers,
which are eax, ecx, and edx. The rest of the registers are callee-save

which means that if a function wants to use those registers, it has to
first save them and then restore them before returning. In Figure 5,
the first thing that the main function does is save the value of the ebp

register on the stack. The leave instruction copies the contents of
the ebp register into the esp register, so esp points to the same place
in the stack as the base pointer. It then pops the old base pointer
into the ebp register. Appendix 6.4 is a quick reference for the x86
instructions that you will likely need. (They are the ones I used in
the reference compiler.) For a complete list of x86 instructions, see
the Intel manuals [9, 10, 11].

1.5. FLATTEN EXPRESSIONS 9

.globl main
main:

pushl %ebp
movl %esp, %ebp
subl $4, %esp
call input
negl %eax
movl %eax, -4(%ebp)
call input
addl -4(%ebp), %eax
pushl %eax
call print_int_nl
addl $4, %esp
movl $0, %eax
leave
ret

FIGURE 5. The x86 assembly code for the program
x = - input(); print x + input().

1.5. Flatten expressions

The first step in translating from P0 to x86 is to flatten complex
expressions into a series of assignment statements. For example, the
program

print - input() + 2

is translated to the following

tmp0 = input()
tmp1 = - tmp0
tmp2 = tmp1 + 2
print tmp2

In the resulting code, the operands of an expression are either vari-
ables or constants, that is, they are simple expressions. If an expression
has any other kind of operand, then it is a complex expression.

EXERCISE 1.3. Write a recursive function that flattens a P0 pro-
gram into an equivalent P0 program that contains no complex ex-
pressions. Test that you have not changed the semantics of the pro-
gram by writing a function that prints the resulting program. Run
the program using the standard python interpreter to verify that it
gives the the same answers for all of your test cases.

10 1. INTEGERS AND VARIABLES

1.6. Select instructions

The next step is to translate the flattened P0 statements into x86
instructions. For now we will assign all variables to locations on the
stack. In chapter 3, we describe a register allocation algorithm that
tries to place as many variables as possible into registers.

Figure 6 shows an example translation, selecting x86 instructions
to accomplish each P0 statement. Sometimes several x86 instruction
are needed to carry out a Python statement. The translation shown
here strives for simplicity over performance. You are encouraged to
experiment with better instruction sequences, but it is recommended
that you only do that after getting a simple version working. The
print_int_nl function is provided in a C library, the file runtime.c

on the course web page.

EXERCISE 1.4. Write a function that translates flattened P0 pro-
grams into x86 assembly. In addition to selecting instructions for
the Python statements, you will need to generate a label for the main

function and the proper prologue and epilogue instructions, which
you can copy from Figure 5. The suggested organization of your
compiler is shown in Figure 7.

Your compiler should be a (Python) script that takes one argu-
ment, the name of the input file, and that produces a file (containing
the x86 ouput) with the same name as the input file except that the
.py suffix should be replaced by the .s suffix.

That is, given a wrapper script that invokes your compiler called
pyyc, invoking

$./pyyc mytests/test1.py

should produce an x86 assembly file mytests/test1.s.

1.6. SELECT INSTRUCTIONS 11

tmp0 = input()
tmp1 = - tmp0
tmp2 = tmp1 + 2
print tmp2

=)
.globl main
main:

pushl %ebp
movl %esp, %ebp
subl $12,%esp # make stack space for 3 variables

call input
movl %eax, -4(%ebp) # tmp0 is in -4(%ebp)

movl -4(%ebp), %eax
negl %eax
movl %eax, -8(%ebp) # tmp1 is in -8(%ebp)

movl -8(%ebp), %eax
addl $2, %eax
movl %eax, -12(%ebp) # tmp2 is in -12(%ebp)

pushl -12(%ebp) # push the argument on the stack
call print_int_nl
addl $4, %esp # pop the stack

movl $0, %eax # put return value in eax
leave
ret

FIGURE 6. Example translation to x86 assembly.

Select
Instructions

Lex & Parse
(use Python's
builtin parser)

Python AST

Python text file

x86 Assembly File

Flat
Python AST

Flatten
Expressions

FIGURE 7. Suggested organization of the compiler.

bec
Pencil

bec
Pencil

bec
Pencil

bec
Pencil

bec
Pencil

bec
Pencil

bec
Pencil

bec
Pencil

bec
Pencil

bec
Pencil

	Chapter 1. Integers and variables
	1.1. ASTs and the P0 subset of Python
	1.2. Understand the meaning of P0
	1.3. Write recursive functions
	1.4. Learn the x86 assembly language
	1.5. Flatten expressions
	1.6. Select instructions

	Chapter 2. Parsing
	2.1. Lexical analysis
	2.2. Background on CFGs and the P0 grammar.
	2.3. Generating parsers with PLY
	2.4. The LALR(1) algorithm
	2.4.1. Parse table generation
	2.4.2. Resolving conflicts with precedence declarations

	Chapter 3. Register allocation
	3.1. Liveness analysis
	3.2. Building the interference graph
	3.3. Color the interference graph by playing Sudoku
	3.4. Generate spill code
	3.5. Assign homes and remove trivial moves
	3.6. Read more about register allocation

	Chapter 4. Data types and polymorphism
	4.1. Syntax of P1
	4.2. Semantics of P1
	4.3. New Python AST classes
	4.4. Compiling polymorphism
	4.5. The explicate pass
	4.6. Type checking the explicit AST
	4.7. Update expression flattening
	4.8. Update instruction selection
	4.9. Update register allocation
	4.10. Removing structured control flow
	4.11. Updates to print x86

	Chapter 5. Functions
	5.1. Syntax of P2
	5.2. Semantics of P2
	5.3. Overview of closure conversion
	5.4. Overview of heapifying variables
	5.4.1. Discussion

	5.5. Compiler implementation
	5.5.1. The Uniquify Variables Pass
	5.5.2. The Explicate Operations Pass
	5.5.3. The Heapify Variables Pass
	5.5.4. The Closure Conversion Pass
	5.5.5. The Flatten Expressions Pass
	5.5.6. The Select Instructions Pass
	5.5.7. The Register Allocation Pass
	5.5.8. The Print x86 Pass

	Chapter 6. Objects
	6.1. Syntax of P3
	6.2. Semantics of P3
	6.2.1. Inheritance
	6.2.2. Objects
	6.2.3. If and While Statements

	6.3. Compiling Classes and Objects
	6.3.1. Compiling empty class definitions and class attributes
	6.3.2. Compiling class definitions
	6.3.3. Compiling objects
	6.3.4. Compiling bound and unbound method calls

	Appendix
	6.4. x86 Instruction Reference

	Bibliography

