
A Problem Course in Compilation:
From Python to x86 Assembly

Revised August 28, 2017

Jeremy G. Siek

Bor-Yuh Evan Chang

UNIVERSITY OF COLORADO BOULDER
E-mail address: {jeremy.siek, evan.chang}@colorado.edu

ABSTRACT. The primary goal of this course is to help students
acquire an understanding of what happens “behind the scenes”
when programs written in high-level languages are executed on
modern hardware. This understanding is useful for estimating
performance tradeoffs and debugging programs. A secondary
goal of the course is to teach students the principles, techniques,
and tools that are used in compiler construction. While an engi-
neer seldom needs to implement a compiler for a general purpose
language, it is quite common to implement small domain-specific
languages as part of a larger software system. A tertiary goal of
this course is to give the students a chance to practice building a
large piece of software using good software engineering practices,
in particular, using incremental and test-driven development.

The general outline of the course is to implement a sequence
of compilers for increasingly larger subsets of the Python 2.7 pro-
gramming language. The subsets are chosen primarily to bring
out interesting principles while keeping busy work to a minimum.
Nevertheless, the assignments are challenging and require a sig-
nificant amount of code. The target language for this sequence of
compilers is the x86 assembly language—the native language of
most personal computers. These notes are organized as a project-
based, problem course, which means that they present the important
ideas and pose exercises that incrementally build a compiler, but
many details are left to the student to discover.

Contents

Chapter 1. Integers and variables 1
1.1. ASTs and the P0 subset of Python 1
1.2. Understand the meaning of P0 3
1.3. Write recursive functions 5
1.4. Learn the x86 assembly language 7
1.5. Flatten expressions 9
1.6. Select instructions 10

Chapter 2. Parsing 13
2.1. Lexical analysis 13
2.2. Background on CFGs and the P0 grammar. 16
2.3. Generating parsers with PLY 19
2.4. The LALR(1) algorithm 21
2.4.1. Parse table generation 23
2.4.2. Resolving conflicts with precedence declarations 24

Chapter 3. Register allocation 27
3.1. Liveness analysis 28
3.2. Building the interference graph 29
3.3. Color the interference graph by playing Sudoku 31
3.4. Generate spill code 32
3.5. Assign homes and remove trivial moves 34
3.6. Read more about register allocation 34

Chapter 4. Data types and polymorphism 37
4.1. Syntax of P1 37
4.2. Semantics of P1 37
4.3. New Python AST classes 40
4.4. Compiling polymorphism 41
4.5. The explicate pass 45
4.6. Type checking the explicit AST 49
4.7. Update expression flattening 51
4.8. Update instruction selection 52
4.9. Update register allocation 53
4.10. Removing structured control flow 53

iii

iv CONTENTS

4.11. Updates to print x86 54

Chapter 5. Functions 57
5.1. Syntax of P2 57
5.2. Semantics of P2 57
5.3. Overview of closure conversion 61
5.4. Overview of heapifying variables 63
5.4.1. Discussion 64
5.5. Compiler implementation 64
5.5.1. The Uniquify Variables Pass 65
5.5.2. The Explicate Operations Pass 66
5.5.3. The Heapify Variables Pass 66
5.5.4. The Closure Conversion Pass 67
5.5.5. The Flatten Expressions Pass 69
5.5.6. The Select Instructions Pass 69
5.5.7. The Register Allocation Pass 69
5.5.8. The Print x86 Pass 69

Chapter 6. Objects 71
6.1. Syntax of P3 71
6.2. Semantics of P3 71
6.2.1. Inheritance 73
6.2.2. Objects 73
6.2.3. If and While Statements 76
6.3. Compiling Classes and Objects 76
6.3.1. Compiling empty class definitions and class attributes 77
6.3.2. Compiling class definitions 78
6.3.3. Compiling objects 80
6.3.4. Compiling bound and unbound method calls 81

Appendix 83
6.4. x86 Instruction Reference 83

Bibliography 85

CHAPTER 1

Integers and variables

The main concepts in this chapter are
abstract syntax trees: Inside the compiler we represent progra-

ms with a data-structure called an abstract syntax tree (AST).
recursive functions: We analyze and manipulate abstract syn-

tax trees with recursive functions.
flattening expressions into instructions: One step in compil-

ing high-level languages to low-level languages is flattening
expressions trees into lists of instructions.

selecting instructions: The x86 assembly language offers a pe-
culiar variety of instructions, so selecting which instructions
are needed to get the job done is not always easy.

test-driven development: A compiler is a large piece of soft-
ware. To maximize our productivity (and minimize bugs!)
we use good software engineering practices, such as writing
lots of good test cases before writing code.

1.1. ASTs and the P0 subset of Python

The first subset of Python that we consider is extremely simple:
it consists of print statements, assignment statements, some integer
arithmetic, and the input() function. We call this subset P0. The
following is an example P0 program.

print - input() + input()

Programs are written one character at a time but we, as program-
mers, do not think of programs as sequences of characters. We think
about programs in chunks like if statements and for loops. These
chunks often have parts, for example, an if statement has a then-
clause and an else-clause. Inside the compiler, we often traverse
over a program one chunk at a time, going from parent chunks to
their children. A data-structure that facilitates this kind of traversal
is a tree. Each node in the tree represents a programming language
construct and each node has edges that point to its children. When
a tree is used to represent a program, we call it an abstract syntax tree

1

2 1. INTEGERS AND VARIABLES

(AST). While trees in nature grow up with their leaves at the top, we
think of ASTs as growing down with the leaves at the bottom.

Printnl

CallFunc

Add

UnarySub

CallFunc Name []

Name

nodes[0]

rightleft

node argsexpr

node

Module
Stmtnode

nodes[0]

[]

args

'input'

'input'
name

name

FIGURE 1. The abstract syntax tree for print - input() + input().

Figure 1 shows the abstract syntax tree for the previous P0 pro-
gram. There is a standard Python library that turns a sequence of
characters into an AST, using a process called parsing, which we learn
about in the next chapter. The following interaction with the Python
interpreter shows a call to the Python parser.

>>> import compiler

>>> ast = compiler.parse("print - input() + input()")

>>> ast

Module(None,

Stmt([Printnl([Add((UnarySub(CallFunc(Name(’input’),

[], None, None)),

CallFunc(Name(’input’),

[], None, None)))],

None)]))

Each node in the AST is a Python object. The objects are instances of
Python classes; there is one class for each langauge construct. In the
above interaction we invoked compiler.parse, but in your compiler
I recommend using an alternative function that takes it’s input from
a file: compiler.parseFile. Figure 2 shows the Python classes for the
AST nodes for P0. For each class, we have only listed its constructor,
the __init__ method. You can find out more about these classes by

1.2. UNDERSTAND THE MEANING OF P0 3

reading the file compiler/ast.py of the Python installation on your
computer.

To keep things simple, we place some restrictions on P0. In a
print statement, instead of multiple things to print, as in Python
2.7, you only need to support printing one thing. So you can as-
sume the nodes attribute of a Printnl node is a list containing a sin-
gle AST node. Similarly, for expression statements, you only need to
support a single expression, so you do not need to support tuples.
The P0 subset only includes basic assignments instead of the much
more general forms supported by Python 2.7. You only need to sup-
port a single variable on the left-hand-side. So the nodes attribute of
Assign is a list containing a single AssName node whose flag attribute
is OP_ASSIGN. The only kind of value allowed inside of a Const node
is an integer. P0 does not include support for Boolean values, so a P0

AST will never have a Name node whose name attribute is “True” or
“False”.

class Module(Node):

def __init__(self, doc, node):

self.doc = doc

self.node = node

class Stmt(Node):

def __init__(self, nodes):

self.nodes = nodes

class Printnl(Node):

def __init__(self, nodes, dest):

self.nodes = nodes

self.dest = dest

class Assign(Node):

def __init__(self, nodes, expr):

self.nodes = nodes

self.expr = expr

class AssName(Node):

def __init__(self, name, flags):

self.name = name

self.flags = flags

class Discard(Node):

def __init__(self, expr):

self.expr = expr

class Const(Node):

def __init__(self, value):

self.value = value

class Name(Node):

def __init__(self, name):

self.name = name

class Add(Node):

def __init__(self, (left, right)):

self.left = left

self.right = right

class UnarySub(Node):

def __init__(self, expr):

self.expr = expr

CallFunc is for calls to the ’input’ function
class CallFunc(Node):

def __init__(self, node, args):

self.node = node

self.args = args

FIGURE 2. The Python classes for representing P0 ASTs.

1.2. Understand the meaning of P0

The meaning of Python programs, that is, what happens when
you run a program, is defined in the Python Reference Manual [20].

4 1. INTEGERS AND VARIABLES

EXERCISE 1.1. Read the sections of the Python Reference Manual
that apply to P0: 3.2, 5.5, 5.6, 6.1, 6.2, and 6.6. Also read the entry for
the input function in the Python Library Reference, in section 2.1.

Sometimes it is difficult to understand the technical jargon in pro-
gramming language reference manuals. A complementary way to
learn about the meaning of Python programs is to experiment with
the standard Python interpreter. If there is an aspect of the language
that you do not understand, create a program that uses that aspect
and run it! Suppose you are not sure about a particular feature but
have a guess, a hypothesis, about how it works. Think of a program
that will produce one output if your hypothesis is correct and pro-
duce a different output if your hypothesis is incorrect. You can then
run the Python interpreter to validate or disprove your hypothesis.

For example, suppose that you are not sure what happens when
the result of an arithmetic operation results in a very large integer,
an integer too large to be stored in a machine register (> 231 − 1). In
the language C, integer operations wrap around, so 2× 230 produces
−2147483648 [13]. Does the same thing happen in Python? Let us try
it and see:

>>> 2 * 2**30

2147483648L

No, the number does not wrap around! Instead, Python has two
kinds of integers: plain integers for integers in the range−231 to 231−1
and long integers for integers in a range that is only limited by the
amount of (virtual) memory in your computer. For P0 we restrict our
attention to just plain integers and say that operations that result in
integers outside of the range −231 to 231 − 1 are undefined.

The built-in Python function input() reads in a line from stan-
dard input (stdin) and then interprets the string as if it were a Python
expression, using the built-in eval function. For P0 we only require a
subset of this functionality. The input function need only deal with
integer literals. A call to the input function, of the form "input()",
is parsed into the function call AST node CallFunc. You do not need
to handle general function calls, just recognize the special case of a
function call where the function being called is named "input".

EXERCISE 1.2. Write some programs in the P0 subset of Python.
The programs should be chosen to help you understand the lan-
guage. Look for corner cases or unusual aspects of the language to
test in your programs. Later in this assignment, you will use these
programs to test your compiler, so the tests should be thorough and

http://docs.python.org/ref/types.html
http://docs.python.org/ref/unary.html
http://docs.python.org/ref/binary.html
http://docs.python.org/reference/simple_stmts.html#expression-statements
http://docs.python.org/reference/simple_stmts.html#assignment-statements
http://docs.python.org/ref/print.html
http://docs.python.org/lib/built-in-funcs.html

1.3. WRITE RECURSIVE FUNCTIONS 5

should exercise all the features of P0. If the tests are not thorough,
then your compiler may pass all your tests but still have bugs that
are caught by the automatic grader. Run your test programs using
the standard Python interpreter.

1.3. Write recursive functions

The main programming technique for analyzing and manipulat-
ing ASTs is to write recursive functions that traverse the tree. As
an example, we create a function called num_nodes that counts the
number of nodes in an AST. Figure 3 shows a schematic of how this
function works. Each triangle represents a call to num_nodes and is
responsible for counting the number of nodes in the sub-tree whose
root is the argument to num_nodes. In the figure, the largest trian-
gle is responsible for counting the number of nodes in the sub-tree
rooted at Add. The key to writing a recursive function is to be lazy!
Let the recursion do the work for you. Just process one node and let
the recursion handle the children. In Figure 3, we make the recursive
calls num_nodes(left) and num_nodes(right) to count the nodes in the
child sub-trees. All we have to do to then is to add the two numbers
and add one more to count the current node. Figure 4 shows the
definition of the num_nodes function.

Add

left right

num_nodes(Add)

num_nodes(right)num_nodes(left)

FIGURE 3. Schematic for a recursive function process-
ing an AST.

When a node has a list of children, as is the case for Stmt, a con-
venient way to process the children is to use List Comprehensions,
described in the Python Tutorial [21]. A list comprehension has the
following form

[compute for variable in list]

http://docs.python.org/tut/node7.html

6 1. INTEGERS AND VARIABLES

from compiler.ast import *

def num_nodes(n):

if isinstance(n, Module):

return 1 + num_nodes(n.node)

elif isinstance(n, Stmt):

return 1 + sum([num_nodes(x) for x in n.nodes])

elif isinstance(n, Printnl):

return 1 + num_nodes(n.nodes[0])

elif isinstance(n, Assign):

return 1 + num_nodes(n.nodes[0]) + num_nodes(n.expr)

elif isinstance(n, AssName):

return 1

elif isinstance(n, Discard):

return 1 + num_nodes(n.expr)

elif isinstance(n, Const):

return 1

elif isinstance(n, Name):

return 1

elif isinstance(n, Add):

return 1 + num_nodes(n.left) + num_nodes(n.right)

elif isinstance(n, UnarySub):

return 1 + num_nodes(n.expr)

elif isinstance(n, CallFunc):

return 1 + num_nodes(n.node)

else:

raise Exception(’Error in num_nodes: unrecognized AST node’)

FIGURE 4. Recursive function that counts the number
of nodes in an AST.

This performs the specified computation for each element in the list,
resulting in a list holding the results of the computations. For exam-
ple, in Figure 4 in the case for Stmt we write

[num_nodes(x) for x in n.nodes]

This code makes a recursive call to num_nodes for each child node
in the list n.nodes. The result of this list comprehension is a list of
numbers. The complete code for handling a Stmt node in Figure 4 is

return 1 + sum([num_nodes(x) for x in n.nodes])

As is typical in a recursive function, after making the recursive calls
to the children, there is some work left to do. We add up the number
of nodes from the children using the sum function, which is docu-
mented under Built-in Functions in the Python Library Manual [19].
We then add 1 to account for the Stmt node itself.

There are 11 if statements in the num_nodes function, one for each
kind of AST node. In general, when writing a recursive function

http://docs.python.org/lib/built-in-funcs.html

1.4. LEARN THE X86 ASSEMBLY LANGUAGE 7

over an AST, it is good to double check and make sure that you have
written one if for each kind of AST node. The raise of an exception
in the else checks that the input does not contain any other kinds of
nodes.

1.4. Learn the x86 assembly language

This section gives a brief introduction to the x86 assembly lan-
guage. There are two variations on the syntax for x86 assembly: the
Intel syntax and the AT&T syntax. Here we use the AT&T syntax,
which is accepted by the GNU Assembler and by gcc. The main
difference between the AT&T syntax and the Intel syntax is that in
AT&T syntax the destination register on the right, whereas in Intel
syntax it is on the left.

The x86 assembly language consists of hundreds of instructions
and many intricate details. However, for our purposes a tiny subset
of the language will do. The program in Figure 5 serves to give a first
taste of x86 assembly. This program is equivalent to the following
Python program, a small variation on the one we discussed earlier.

x = - input()

print x + input()

Perhaps the most obvious difference between Python and x86 is that
Python allows expressions to be nested within one another. In con-
trast, an x86 program consists of a flat sequence of instructions. An-
other difference is that x86 does not have variables. Instead, it has
a fixed set of registers that can each hold 32 bits. The registers have
funny three letter names:

eax, ebx, ecx, edx, esi, edi, ebp, esp

When referring to a register in an instruction, place a percent sign
(%) before the name of the register.

When compiling from Python to x86, we may very well have
more variables than registers. In such situations we use the stack
to store the variables. Recall that a stack is a data structure that sup-
ports pushing and popping values in a last-in-first-out (LIFO) man-
ner. In the program in Figure 5, the variable x has been mapped
to a stack location. The register esp always contains the address of
the item at the front of the stack. In addition to local variables, the
stack is also used to pass arguments in a function call. In this course
we use the cdecl convention used by the GNU C compiler. The in-
struction pushl %eax, which appears before the call to print_int_nl,
serves to put the result of the addition on the stack so that it can be

8 1. INTEGERS AND VARIABLES

accessed within the print_int_nl function. The stack grows down,
so the pushl instruction causes esp to be lowered by 4 bytes (the size
of one 32 bit integer).

Because the stack pointer, esp, is constantly changing, it would
be difficult to use esp for referring to local variables stored on the
stack. Instead, the ebp register (bp is for base pointer) is used for this
purpose.

The stack is conceptually a two-dimensional stack. We have al-
ready seen that words (32-bit values) are pushed and popped via
the stack pointer. Additionally, each function call pushes an activa-
tion record to store its local state. The function call’s activation record
is popped when the function returns. The first two instructions set
up of the activation record. In particular, the instruction pushl %ebp

saves the current value of the base pointer, that is, the base pointer of
the previous activation record. Then, the instruction movl %esp,%ebp

puts a copy of the stack pointer into ebp delineating the start of this
call’s activation record. We can then use ebp throughout the lifetime
of the call to this function to refer to local variables on the stack.
And we see that ebp points to the head of a linked-list of activation
records. In Figure 5, the value of variable x is referred to by -4(%ebp),
which is the assembly way of writing the C expression *(ebp - 4)

(the 4 is in bytes). That is, it loads the data from the address stored
in ebp minus 4 bytes.

The eax register plays a special role: functions put their return
values in eax. For example, in Figure 5, the calls to the input function
put their results in eax. It is a good idea not to put anything impor-
tant into eax before making a function call, as it will be overwritten.
In general, a function may overwrite any of the caller-save registers,
which are eax, ecx, and edx. The rest of the registers are callee-save
which means that if a function wants to use those registers, it has to
first save them and then restore them before returning. In Figure 5,
the first thing that the main function does is save the value of the ebp

register on the stack. The leave instruction copies the contents of
the ebp register into the esp register, so esp points to the same place
in the stack as the base pointer. It then pops the old base pointer
into the ebp register. Appendix 6.4 is a quick reference for the x86
instructions that you will likely need. (They are the ones I used in
the reference compiler.) For a complete list of x86 instructions, see
the Intel manuals [9, 10, 11].

1.5. FLATTEN EXPRESSIONS 9

.globl main

main:

pushl %ebp

movl %esp, %ebp

subl $4, %esp

call input

negl %eax

movl %eax, -4(%ebp)

call input

addl -4(%ebp), %eax

pushl %eax

call print_int_nl

addl $4, %esp

movl $0, %eax

leave

ret

FIGURE 5. The x86 assembly code for the program
x = - input(); print x + input().

1.5. Flatten expressions

The first step in translating from P0 to x86 is to flatten complex
expressions into a series of assignment statements. For example, the
program

print - input() + 2

is translated to the following

tmp0 = input()

tmp1 = - tmp0

tmp2 = tmp1 + 2

print tmp2

In the resulting code, the operands of an expression are either vari-
ables or constants, that is, they are simple expressions. If an expression
has any other kind of operand, then it is a complex expression.

EXERCISE 1.3. Write a recursive function that flattens a P0 pro-
gram into an equivalent P0 program that contains no complex ex-
pressions. Test that you have not changed the semantics of the pro-
gram by writing a function that prints the resulting program. Run
the program using the standard python interpreter to verify that it
gives the the same answers for all of your test cases.

10 1. INTEGERS AND VARIABLES

1.6. Select instructions

The next step is to translate the flattened P0 statements into x86
instructions. For now we will assign all variables to locations on the
stack. In chapter 3, we describe a register allocation algorithm that
tries to place as many variables as possible into registers.

Figure 6 shows an example translation, selecting x86 instructions
to accomplish each P0 statement. Sometimes several x86 instruction
are needed to carry out a Python statement. The translation shown
here strives for simplicity over performance. You are encouraged to
experiment with better instruction sequences, but it is recommended
that you only do that after getting a simple version working. The
print_int_nl function is provided in a C library, the file runtime.c

on the course web page.

EXERCISE 1.4. Write a function that translates flattened P0 pro-
grams into x86 assembly. In addition to selecting instructions for
the Python statements, you will need to generate a label for the main

function and the proper prologue and epilogue instructions, which
you can copy from Figure 5. The suggested organization of your
compiler is shown in Figure 7.

Your compiler should be a (Python) script that takes one argu-
ment, the name of the input file, and that produces a file (containing
the x86 ouput) with the same name as the input file except that the
.py suffix should be replaced by the .s suffix.

That is, given a wrapper script that invokes your compiler called
pyyc, invoking

$./pyyc mytests/test1.py

should produce an x86 assembly file mytests/test1.s.

1.6. SELECT INSTRUCTIONS 11

tmp0 = input()

tmp1 = - tmp0

tmp2 = tmp1 + 2

print tmp2

=⇒
.globl main

main:

pushl %ebp

movl %esp, %ebp

subl $12,%esp # make stack space for 3 variables

call input

movl %eax, -4(%ebp) # tmp0 is in -4(%ebp)

movl -4(%ebp), %eax

negl %eax

movl %eax, -8(%ebp) # tmp1 is in -8(%ebp)

movl -8(%ebp), %eax

addl $2, %eax

movl %eax, -12(%ebp) # tmp2 is in -12(%ebp)

pushl -12(%ebp) # push the argument on the stack
call print_int_nl

addl $4, %esp # pop the stack

movl $0, %eax # put return value in eax
leave

ret

FIGURE 6. Example translation to x86 assembly.

Select
Instructions

Lex & Parse
(use Python's
builtin parser)

Python AST

Python text file

x86 Assembly File

Flat
Python AST

Flatten
Expressions

FIGURE 7. Suggested organization of the compiler.

CHAPTER 2

Parsing

The main ideas covered in this chapter are
lexical analysis: the identification of tokens (i.e., words) with-

in sequences of characters.
parsing: the identification of sentence structure within sequen-

ces of tokens.
In general, the syntax of the source code for a language is called

its concrete syntax. The concrete syntax of P0 specifies which pro-
grams, expressed as sequences of characters, are P0 programs. The
process of transforming a program written in the concrete syntax
(a sequence of characters) into an abstract syntax tree is traditionally
subdivided into two parts: lexical analysis (often called scanning) and
parsing. The lexical analysis phase translates the sequence of charac-
ters into a sequence of tokens, where each token consists of several
characters. The parsing phase organizes the tokens into a parse tree
as directed by the grammar of the language and then translates the
parse tree into an abstract syntax tree.

It is feasible to implement a compiler without doing lexical anal-
ysis, instead just parsing. However, scannerless parsers tend to be
slower, which mattered back when computers were slow, and some-
times still matters for very large files.

The Python Lex-Yacc tool, abbreviated PLY [2], is an easy-to-
use Python imitation of the original lex and yacc C programs. Lex
was written by Eric Schmidt and Mike Lesk [14] at Bell Labs, and
is the standard lexical analyzer generator on many Unix systems.
YACC stands from Yet Another Compiler Compiler and was orig-
inally written by Stephen C. Johnson at AT&T [12]. The PLY tool
combines the functionality of both lex and yacc. In this chapter we
will use the PLY tool to generate a lexer and parser for the P0 subset
of Python.

2.1. Lexical analysis

The lexical analyzer turns a sequence of characters (a string) into
a sequence of tokens. For example, the string

13

14 2. PARSING

’print 1 + 3’

will be converted into the list of tokens

[’print’,’1’,’+’,’3’]

Actually, to be more accurate, each token will contain the token type

and the token’s value, which is the string from the input that matched
the token.

With the PLY tool, the types of the tokens must be specified by
initializing the tokens variable. For example,

tokens = (’PRINT’,’INT’,’PLUS’)

To construct the lexical analyzer, we must specify which sequences
of characters will map to each type of token. We do this specification
using regular expressions. The term “regular” comes from “regular
languages”, which are the (particularly simple) class of languages
that can be recognized by a finite automaton. A “language” is a set
of strings. A regular expression is a pattern formed of the following
core elements:

(1) a character, e.g. a. The only string that matches this regular
expression is ’a’.

(2) two regular expressions, one followed by the other (concate-
nation), e.g. bc. The only string that matches this regular
expression is ’bc’.

(3) one regular expression or another (alternation), e.g. a|bc.
Both the string ’a’ and ’bc’ would be matched by this pat-
tern (i.e., the language described by the regular expression
a|bc consists of the strings ’a’ and ’bc’).

(4) a regular expression repeated zero or more times (Kleene
closure), e.g. (a|bc)*. The string ’bcabcbc’ would match
this pattern, but not ’bccba’.

(5) the empty sequence (epsilon)
The Python support for regular expressions goes beyond the core

elements and includes many other convenient short-hands, for ex-
ample + is for repetition one or more times. If you want to refer
to the actual character +, use a backslash to escape it. Section 4.2.1
Regular Expression Syntax of the Python Library Reference gives an
in-depth description of the extended regular expressions supported
by Python.

Normal Python strings give a special interpretation to backslashes,
which can interfere with their interpretation as regular expressions.
To avoid this problem, use Python’s raw strings instead of normal

http://docs.python.org/lib/re-syntax.html
http://docs.python.org/lib/re-syntax.html

2.1. LEXICAL ANALYSIS 15

strings by prefixing the string with an r. For example, the following
specifies the regular expression for the ’PLUS’ token.

t_PLUS = r’\+’

The t_ is a naming convention that PLY uses to know when you are
defining the regular expression for a token.

Sometimes you need to do some extra processing for certain kinds
of tokens. For example, for the INT token it is nice to convert the
matched input string into a Python integer. With PLY you can do
this by defining a function for the token. The function must have the
regular expression as its documentation string and the body of the
function should overwrite in the value field of the token. Here’s how
it would look for the INT token. The \d regular expression stands for
any decimal numeral (0-9).

def t_INT(t):

r’\d+’

try:

t.value = int(t.value)

except ValueError:

print "integer value too large", t.value

t.value = 0

return t

In addition to defining regular expressions for each of the tokens,
you’ll often want to perform special handling of newlines and white-
space. The following is the code for counting newlines and for telling
the lexer to ignore whitespace. (Python has complex rules for deal-
ing with whitespace that we’ll ignore for now.)

def t_newline(t):

r’\n+’

t.lexer.lineno += len(t.value)

t_ignore = ’ \t’

If a portion of the input string is not matched by any of the to-
kens, then the lexer calls the error function that you provide. The
following is an example error function.

def t_error(t):

print "Illegal character ’%s’" % t.value[0]

t.lexer.skip(1)

Last but not least, you’ll need to instruct PLY to generate the lexer
from your specification with the following code.

16 2. PARSING

import ply.lex as lex

lex.lex()

Figure 1 shows the complete code for an example lexer.

tokens = (’PRINT’,’INT’,’PLUS’)

t_PRINT = r’print’

t_PLUS = r’\+’

def t_INT(t):

r’\d+’

try:

t.value = int(t.value)

except ValueError:

print "integer value too large", t.value

t.value = 0

return t

t_ignore = ’ \t’

def t_newline(t):

r’\n+’

t.lexer.lineno += t.value.count("\n")

def t_error(t):

print "Illegal character ’%s’" % t.value[0]

t.lexer.skip(1)

import ply.lex as lex

lex.lex()

FIGURE 1. Example lexer implemented using the PLY
lexer generator.

EXERCISE 2.1. Write a PLY lexer specification for P0 and test it on
a few input programs, looking at the output list of tokens to see if
they make sense.

2.2. Background on CFGs and the P0 grammar.

A context-free grammar (CFG) consists of a set of rules (also called
productions) that describes how to categorize strings of various forms.

2.2. BACKGROUND ON CFGS AND THE P0 GRAMMAR. 17

Context-free grammars specify a class of languages known as context-
free languages (like regular expressions specify regular languages).
There are two kinds of categories, terminals and non-terminals in a
context-free grammar. The terminals correspond to the tokens from
the lexical analysis. Non-terminals are used to categorize different
parts of a language, such as the distinction between statements and
expressions in Python and C. The term symbol refers to both termi-
nals and non-terminals. A grammar rule has two parts, the left-hand
side is a non-terminal and the right-hand side is a sequence of zero
or more symbols. The notation ::= is used to separate the left-hand
side from the right-hand side. The following is a rule that could be
used to specify the syntax for an addition operator.

(1) expression ::= expression PLUS expression

This rule says that if a string can be divided into three parts, where
the first part can be categorized as an expression, the second part is
the PLUS terminal (token), and the third part can be categorized as
an expression, then the entire string can be categorized as an expres-
sion. The next example rule has the terminal INT on the right-hand
side and says that a string that is categorized as an integer (by the
lexer) can also be categorized as an expression. As is apparent here,
a string can be categorized by more than one non-terminal.

(2) expression ::= INT

To parse a string is to determine how the string can be catego-
rized according to a given grammar. Suppose we have the string
“1 + 3”. Both the 1 and the 3 can be categorized as expressions us-
ing rule 2. We can then use rule 1 to categorize the entire string as an
expression. A parse tree is a good way to visualize the parsing pro-
cess. (You will be tempted to confuse parse trees and abstract syntax
trees. There is a close correspondence, but the excellent students
will carefully study the difference to avoid this confusion.) A parse
tree for “1 + 3” is shown in Figure 2. The best way to start drawing
a parse tree is to first list the tokenized string at the bottom of the
page. These tokens correspond to terminals and will form the leaves
of the parse tree. You can then start to categorize non-terminals, or
sequences of non-terminals, using the parsing rules. For example,
we can categorize the integer “1” as an expression using rule (2), so
we create a new node above “1”, label the node with the left-hand
side terminal, in this case expression, and draw a line down from
the new node down to “1”. As an optional step, we can record which
rule we used in parenthesis after the name of the terminal. We then

18 2. PARSING

repeat this process until all of the leaves have been connected into a
single tree, or until no more rules apply.

"1" : INT "+" : PLUS "3" : INT

expression (rule 2) expression (rule 2)

expression (rule 1)

FIGURE 2. The parse tree for “1 + 3”.

Exhibiting a parse tree for a string validates that it is in the lan-
guage described by the context-free grammar in question. If there
can be more than one parse tree for the same string, then the gram-
mar is ambiguous. For example, the string “1 + 2 + 3” can be parsed
two different ways using rules 1 and 2, as shown in Figure 3. In Sec-
tion 2.4.2 we’ll discuss ways to avoid ambiguity through the use of
precedence levels and associativity.

"1" : INT "+" : PLUS "2" : INT

expression (rule 2) expression (rule 2)

expression (rule 1)

"3" : INT"+" : PLUS

expression (rule 2)

expression (rule 1)

"1" : INT "+" : PLUS "2" : INT

expression (rule 2) expression (rule 2)

expression (rule 1)

"3" : INT"+" : PLUS

expression (rule 2)

expression (rule 1)

FIGURE 3. Two parse trees for “1 + 2 + 3”.

The process described above for creating a parse-tree was “bottom-
up”. We started at the leaves of the tree and then worked back up to
the root. An alternative way to build parse-trees is the “top-down”
derivation approach. This approach is not a practical way to parse
a particular string but it is helpful for thinking about all possible
strings that are in the language described by the grammar. To per-
form a derivation, start by drawing a single node labeled with the
starting non-terminal for the grammar. This is often the program

non-terminal, but in our case we simply have expression. We then
select at random any grammar rule that has expression on the left-
hand side and add new edges and nodes to the tree according to
the right-hand side of the rule. The derivation process then repeats
by selecting another non-terminal that does not yet have children.
Figure 4 shows the process of building a parse tree by derivation.
A left-most derivation is one in which the left-most non-terminal is

2.3. GENERATING PARSERS WITH PLY 19

always chosen as the next non-terminal to expand. A right-most

derivation is one in which the right-most non-terminal is always
chosen as the next non-terminal to expand. The derivation in Fig-
ure 4 is a right-most derivation.

expression (rule 2)

"+" : PLUS

expression expression

expression (rule 1)expression

"+" : PLUS

expression

expression (rule 1)

"3" : INT "1" : INT "+" : PLUS "3" : INT

expression (rule 2) expression (rule 2)

expression (rule 1)

FIGURE 4. Building a parse-tree by derivation.

For each subset of Python in this course, we will specify which
language features are in a given subset of Python using context-free
grammars. The notation we’ll use for grammars is Extended Backus-
Naur Form (EBNF). The grammar for P0 is shown in Figure 5. Any
symbol not appearing on the left-hand side of a rule is a terminal
(e.g., name and decimalinteger). For simple terminals consisting of
single strings, we simply use the string and avoid giving names to
them (e.g., "+"). This notation does not correspond exactly to the no-
tation for grammars used by PLY, but it should not be too difficult for
the reader to figure out the PLY grammar given the EBNF grammar.

program ::= module

module ::= simple_statement+

simple_statement ::= "print" expression

| name "=" expression

| expression

expression ::= name

| decimalinteger

| "-" expression

| expression "+" expression

| "(" expression ")"

| "input" "(" ")"

FIGURE 5. Context-free grammar for the P0 subset of Python.

2.3. Generating parsers with PLY

Figure 6 shows an example use of PLY to generate a parser. The
code specifies a grammar and it specifies actions for each rule. For
each grammar rule there is a function whose name must begin with
p_. The document string of the function contains the specification of
the grammar rule. PLY uses just a colon : instead of the usual ::=

http://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
http://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form

20 2. PARSING

to separate the left and right-hand sides of a grammar production.
The left-hand side symbol for the first function (as it appears in the
Python file) is considered the start symbol. The body of these func-
tions contains code that carries out the action for the production.

Typically, what you want to do in the actions is build an abstract
syntax tree, as we do here. The parameter t of the function con-
tains the results from the actions that were carried out to parse the
right-hand side of the production. You can index into t to access
these results, starting with t[1] for the first symbol of the right-hand
side. To specify the result of the current action, assign the result into
t[0]. So, for example, in the production expression : INT, we build
a Const node containing an integer that we obtain from t[1], and we
assign the Const node to t[0].

from compiler.ast import Printnl, Add, Const

def p_print_statement(t):

’statement : PRINT expression’

t[0] = Printnl([t[2]], None)

def p_plus_expression(t):

’expression : expression PLUS expression’

t[0] = Add((t[1], t[3]))

def p_int_expression(t):

’expression : INT’

t[0] = Const(t[1])

def p_error(t):

print "Syntax error at ’%s’" % t.value

import ply.yacc as yacc

yacc.yacc()

FIGURE 6. First attempt at writing a parser using PLY.

The PLY parser generator takes your grammar and generates a
parser that uses the LALR(1) shift-reduce algorithm, which is the
most common parsing algorithm in use today. LALR(1) stands for
Look Ahead Left-to-right with Rightmost-derivation and 1 token of
lookahead. Unfortunately, the LALR(1) algorithm cannot handle all
context-free grammars, so sometimes you will get error messages
from PLY. To understand these errors and know how to avoid them,
you have to know a little bit about the parsing algorithm.

2.4. THE LALR(1) ALGORITHM 21

2.4. The LALR(1) algorithm

To understand the error messages of PLY, one needs to under-
stand the underlying parsing algorithm. The LALR(1) algorithm
uses a stack and a finite automaton. Each element of the stack is
a pair: a state number and a symbol. The symbol characterizes the
input that has been parsed so-far and the state number is used to
remember how to proceed once the next symbol-worth of input has
been parsed. Each state in the finite automaton represents where the
parser stands in the parsing process with respect to certain grammar
rules. Figure 7 shows an example LALR(1) parse table generated by
PLY for the grammar specified in Figure 6. When PLY generates a
parse table, it also outputs a textual representation of the parse table
to the file parser.out which is useful for debugging purposes.

Consider state 1 in Figure 7. The parser has just read in a PRINT

token, so the top of the stack is (1,PRINT). The parser is part of the
way through parsing the input according to grammar rule 1, which
is signified by showing rule 1 with a dot after the PRINT token and
before the expression non-terminal. A rule with a dot in it is called
an item. There are several rules that could apply next, both rule 2
and 3, so state 1 also shows those rules with a dot at the beginning
of their right-hand sides. The edges between states indicate which
transitions the automaton should make depending on the next input
token. So, for example, if the next input token is INT then the parser
will push INT and the target state 4 on the stack and transition to
state 4. Suppose we are now at the end of the input. In state 4 it
says we should reduce by rule 3, so we pop from the stack the same
number of items as the number of symbols in the right-hand side
of the rule, in this case just one. We then momentarily jump to the
state at the top of the stack (state 1) and then follow the goto edge
that corresponds to the left-hand side of the rule we just reduced by,
in this case expression, so we arrive at state 3. (A slightly longer
example parse is shown in Figure 7.)

In general, the shift-reduce algorithm works as follows. Look at
the next input token.

• If there there is a shift edge for the input token, push the
edge’s target state and the input token on the stack and pro-
ceed to the edge’s target state.
• If there is a reduce action for the input token, pop k ele-

ments from the stack, where k is the number of symbols in
the right-hand side of the rule being reduced. Jump to the
state at the top of the stack and then follow the goto edge

22 2. PARSING

State 0
start ::= . statement
statement ::= . PRINT expression

State 1
statement ::= PRINT . expression
expression ::= . expression PLUS expression
expression ::= . INT

PRINT, shift

State 2
start ::= statement .

statement, goto

State 3
statement ::=PRINT expression .
expression ::= expression . PLUS expression

end, reduce by rule 1

State 4
expression ::= INT .

end, reduce by rule 3
PLUS, reduce by rule 3

INT, shift expression, goto

State 5
expression ::= expression PLUS . expression
expression ::= . expression PLUS expression
expression ::= . INT

INT, shift PLUS, shift
State 6
expression ::= expression PLUS expression .
expression ::= expression . PLUS expression

end, reduce by rule 2
PLUS, reduce by rule 2

expression, gotoPLUS, shift

Grammar:
0. start ::= statement
1. statement ::= PRINT expression
2. expression ::= expression PLUS expression
3. expression ::= INT

Example parse of 'print 1 + 2'
Stack
[]
[(1,PRINT)]
[(1,PRINT),(4,INT)]
[(1,PRINT),(3,expression)]
[(1,PRINT),(3,expression),(5,+)]
[(1,PRINT),(3,expression),(5,+),(4,INT)]
[(1,PRINT),(3,expression),(5,+),(6,expression)]
[(1,PRINT),(3,expression)]
[(2,statement)]

Input
'print 1 + 2'
'1 + 2'
'+ 2'
'+ 2'
'2'
''
''
''
''

Action
shift to state 1
shift to state 4
reduce by rule 3 to state 1, goto 3
shift to state 5
shift to state 4
reduce by rule 3 to state 5, goto 6
reduce by rule 2 to state 1, goto 3
reduce by rule 1 to state 0, goto 2
accept

FIGURE 7. An LALR(1) parse table and a trace of an
example run.

for the non-terminal that matches the left-hand side of the
rule we’re reducing by. Push the edge’s target state and the
non-terminal on the stack.

Notice that in state 6 of Figure 7 there is both a shift and a reduce
action for the token PLUS, so the algorithm does not know which ac-
tion to take in this case. When a state has both a shift and a reduce
action for the same token, we say there is a shift/reduce conflict. In this
case, the conflict will arise, for example, when trying to parse the in-
put print 1 + 2 + 3. After having consumed print 1 + 2 the parser
will be in state 6, and it will not know whether to reduce to form

2.4. THE LALR(1) ALGORITHM 23

an expression of 1 + 2, or whether it should proceed by shifting the
next + from the input.

A similar kind of problem, known as a reduce/reduce conflict, arises
when there are two reduce actions in a state for the same token.
To understand which grammars gives rise to shift/reduce and re-
duce/reduce conflicts, it helps to know how the parse table is gener-
ated from the grammar, which we discuss next.

2.4.1. Parse table generation. The parse table is generated one
state at a time. State 0 represents the start of the parser. We add
the production for the start symbol to this state with a dot at the
beginning of the right-hand side. If the dot appears immediately
before another non-terminal, we add all the productions with that
non-terminal on the left-hand side. Again, we place a dot at the be-
ginning of the right-hand side of each the new productions. This
process called state closure is continued until there are no more pro-
ductions to add. We then examine each item in the current state I .
Suppose an item has the form A ::= α.Xβ, where A and X are sym-
bols and α and β are sequences of symbols. We create a new state,
call it J . IfX is a terminal, we create a shift edge from I to J , whereas
if X is a non-terminal, we create a goto edge from I to J . We then
need to add some items to state J . We start by adding all items from
state I that have the form B ::= γ.Xκ (where B is any symbol and γ
and κ are arbitrary sequences of symbols), but with the dot moved
past the X . We then perform state closure on J . This process repeats
until there are no more states or edges to add.

We then mark states as accepting states if they have an item that
is the start production with a dot at the end. Also, to add in the
reduce actions, we look for any state containing an item with a dot
at the end. Let n be the rule number for this item. We then put a
reduce n action into that state for every token Y . For example, in
Figure 7 state 4 has an item with a dot at the end. We therefore put
a reduce by rule 3 action into state 4 for every token. (Figure 7 does
not show a reduce rule for INT in state 4 because this grammar does
not allow two consecutive INT tokens in the input. We will not go
into how this can be figured out, but in any event it does no harm to
have a reduce rule for INT in state 4; it just means the input will be
rejected at a later point in the parsing process.)

EXERCISE 2.2. On a piece of paper, walk through the parse ta-
ble generation process for the grammar in Figure 6 and check your
results against Figure 7.

24 2. PARSING

2.4.2. Resolving conflicts with precedence declarations. To solve
the shift/reduce conflict in state 6, we can add the following prece-
dence rule, which says addition associates to the left and takes prece-
dence over printing. This will cause state 6 to choose reduce over
shift.

precedence = (

(’nonassoc’,’PRINT’),

(’left’,’PLUS’)

)

In general, the precedence variable should be assigned a tuple of
tuples. The first element of each inner tuple should be an associa-
tivity (nonassoc, left, or right) and the rest of the elements should
be tokens. The tokens that appear in the same inner tuple have the
same precedence, whereas tokens that appear in later tuples have a
higher precedence. Thus, for the typical precedence for arithmetic
operations, we would specify the following:

precedence = (

(’left’,’PLUS’,’MINUS’),

(’left’,’TIMES’,’DIVIDE’)

)

Figure 8 shows the Python code for generating a lexer and parser
using PLY.

EXERCISE 2.3. Write a PLY grammar specification for P0 and up-
date your compiler so that it uses the generated lexer and parser
instead of using the parser in the compiler module. In addition to
handling the grammar in Figure 5, you also need to handle Python-
style comments, everything following a # symbol up to the newline
should be ignored. Perform regression testing on your compiler to
make sure that it still passes all of the tests that you created for P0.

2.4. THE LALR(1) ALGORITHM 25

Lexer
tokens = (’PRINT’,’INT’,’PLUS’)

t_PRINT = r’print’

t_PLUS = r’\+’

def t_INT(t):

r’\d+’

try:

t.value = int(t.value)

except ValueError:

print "integer value too large", t.value

t.value = 0

return t

t_ignore = ’ \t’

def t_newline(t):

r’\n+’

t.lexer.lineno += t.value.count("\n")

def t_error(t):

print "Illegal character ’%s’" % t.value[0]

t.lexer.skip(1)

import ply.lex as lex

lex.lex()

Parser
from compiler.ast import Printnl, Add, Const

precedence = (

(’nonassoc’,’PRINT’),

(’left’,’PLUS’)

)

def p_print_statement(t):

’statement : PRINT expression’

t[0] = Printnl([t[2]], None)

def p_plus_expression(t):

’expression : expression PLUS expression’

t[0] = Add((t[1], t[3]))

def p_int_expression(t):

’expression : INT’

t[0] = Const(t[1])

def p_error(t):

print "Syntax error at ’%s’" % t.value

import ply.yacc as yacc

yacc.yacc()

FIGURE 8. Example parser with precedence declara-
tions to resolve conflicts.

CHAPTER 3

Register allocation

In chapter 1 we simplified the generation of x86 assembly by
placing all variables on the stack. We can improve the performance
of the generated code considerably if we instead try to place as many
variables as possible into registers. The CPU can access a register in
a single cycle, whereas accessing the stack can take from several cy-
cles (to go to cache) to hundreds of cycles (to go to main memory).
Figure 1 shows a program fragment that we’ll use as a running ex-
ample. The program is almost in x86 assembly but not quite; it still
contains variables instead of stack locations or registers.

The goal of register allocation is to fit as many variables into reg-
isters as possible. It is often the case that we have more variables
than registers, so we can’t naively map each variable to a register.
Fortunately, it is also common for different variables to be needed
during different periods of time, and in such cases the variables can
be mapped to the same register. Consider variables y and z in Fig-
ure 1. After the variable z is used in addl z, x it is no longer needed.
Variable y, on the other hand, is only used after this point, so z and
y could share the same register.

movl $4, z

movl $0, w

movl $1, z

movl w, x

addl z, x

movl w, y

addl x, y

movl y, w

addl x, w

FIGURE 1. An example program in pseudo assembly
code. The program still uses variables instead of regis-
ters and stack locations.

27

28 3. REGISTER ALLOCATION

3.1. Liveness analysis

A variable whose current value is needed later on in the program
is called live.

DEFINITION 3.1. A variable is live if the variable is used at some
later point in the program and there is not an intervening assignment
to the variable.

To understand the latter condition, consider variable z in Figure 1. It
is not live immediately after the instruction movl $4, z because the
later uses of z get their value instead from the instruction movl $1,

z. The variable z is live between z = 1 and its use in addl z, x. We
have annotated the program with the set of variables that are live
between each instruction.

The live variables can be computed by traversing the instruc-
tion sequence back to front (i.e., backwards in execution order). Let
I1, . . . , In be the instruction sequence. We write Lafter(k) for the set
of live variables after instruction Ik and Lbefore(k) for the set of live
variables before instruction Ik. The live variables after an instruction
is always equal to the live variables before the next instruction.

Lafter(k) = Lbefore(k + 1)

To start things off, there are no live variables after the last instruction,
so we have

Lafter(n) = ∅
We then apply the following rule repeatedly, traversing the instruc-
tion sequence back to front.

Lbefore(k) = (Lafter(k)−W (k)) ∪R(k),

where W (k) are the variables written to by instruction Ik and R(k)
are the variables read by instruction Ik. Figure 2 shows the results of
live variables analysis for the example program from Figure 1.

Implementing the live variable analysis in Python is straightfor-
ward thanks to the built-in support for sets. You can construct a set
by first creating a list and then passing it to the set function. The
following creates an empty set:

>>> set([])

set([])

You can take the union of two sets with the | operator:
>>> set([1,2,3]) | set([3,4,5])

set([1, 2, 3, 4, 5])

To take the difference of two sets, use the - operator:

3.2. BUILDING THE INTERFERENCE GRAPH 29

movl $4, z
{}

movl $0, w
{w}

movl $1, z
{w, z}

movl w, x
{x, w, z}

addl z, x
{x, w}

movl w, y
{x, y}

addl x, y
{x, y}

movl y, w
{w, x}

addl x, w
{}

FIGURE 2. The example program annotated with the
set of live variables between each instruction.

>>> set([1,2,3]) - set([3,4,5])

set([1, 2])

Also, just like lists, you can use Python’s for loop to iterate through
the elements of a set:

>>> for x in set([1,2,2,3]):

... print x

1

2

3

3.2. Building the interference graph

Based on the liveness analysis, we know the program regions
where each variable is needed. However, during register allocation,
we’ll need to answer questions of the specific form: are variables u
and v ever live at the same time? (And therefore can’t be assigned
to the same register.) To make this question easier to answer, we cre-
ate an explicit data structure, an interference graph. An interference
graph is an undirected graph that has an edge between two vari-
ables if they are live at the same time, that is, if they interfere with
each other.

30 3. REGISTER ALLOCATION

x

yz

w

FIGURE 3. Interference graph for the example program.

The most obvious way to compute the interference graph is to
look at the set of live variables between each statement in the pro-
gram, and add an edge to the graph for every pair of variables in the
same set. This approach is less than ideal for two reasons. First, it
can be rather expensive because it takes O(n2) time to look at every
pair in a set of n live variables. Second, there’s a special case in which
two variables that are live at the same time don’t actually interfere
with each other: when they both contain the same value.

A better way to compute the edges of the intereference graph is
given by the following rules.

• If instruction Ik is a move: movl s, t, then add the edge (t, v)
for every v ∈ Lafter(k) unless v = t or v = s.
• If instruction Ik is not a move but some other arithmetic in-

struction such as addl s, t, then add the edge (t, v) for every
v ∈ Lafter(k) unless v = t.
• If instruction Ik is of the form call label , then add an edge

(r, v) for every caller-save register r and every variable v ∈
Lafter(k). (The caller-save registers are eax, ecx, and edx.)

Working from the top to bottom of Figure 2, z interferes with w

and x, w interferes with x, and y interferes with x. In the second to
last statement, we see that w interferes with x, but we already know
that. The resulting interference graph is shown in Figure 3.

In Python, a convenient representation for graphs is to use a dic-
tionary that maps nodes to a set of adjacent nodes. So for the inter-
ference graph, the dictionary would map variable names to sets of
variable names.

Consider the first instruction in Figure 2, movl $4, z. The Lafter

set for this instruction is the empty set, in particular, z is not live
which means that this movl is useless, or in compiler lingo, it’s dead.
It is tempting to remove dead instructions during the construction
of the interference graph, but in general, it’s better to keep each
pass focused on just one job, making it easier to debug and main-
tain the code. A more principled approach is to insert a pass after

3.3. COLOR THE INTERFERENCE GRAPH BY PLAYING SUDOKU 31

liveness analysis that removes dead instructions. Also, removing
dead instructions may cause more instructions to become dead, so
one could iterate the liveness analysis and dead-code removal passes
until there is no more dead code to remove. However, to really
do dead-code elimination right, one should combine it with several
other optimizations, such as constant propagation, constant folding,
and procedure inlining [22]. This combination of optimizations is a
good choice of topic for your final project.

3.3. Color the interference graph by playing Sudoku

We now come to the main event, mapping variables to registers
(or to stack locations in the event that we run out of registers). We
need to make sure not to map two variables to the same register if the
two variables interfere with each other. In terms of the interference
graph, this means we cannot map adjacent nodes to the same regis-
ter. If we think of registers as colors, the register allocation problem
becomes the widely-studied graph coloring problem [1, 17].

The reader may actually be more familar with the graph coloring
problem then he or she realizes; the popular game of Sudoku is an
instance of graph coloring. The following describes how to build a
graph out of a Sudoku board.

• There is one node in the graph for each Sudoku square.
• There is an edge between two nodes if the corresponding

squares are in the same row or column, or if the squares are
in the same 3× 3 region.
• Choose nine colors to correspond to the numbers 1 to 9.
• Based on the initial assignment of numbers to squares in the

Sudoku board, assign the corresponding colors to the corre-
sponding nodes in the graph.

If you can color the remaining nodes in the graph with the nine col-
ors, then you’ve also solved the corresponding game of Sudoku.

Given that Sudoku is graph coloring, one can use Sudoku strate-
gies to come up with an algorithm for allocating registers. For exam-
ple, one of the basic techniques for Sudoku is Pencil Marks. The idea
is that you use a process of elimination to determine what numbers
still make sense for a square, and write down those numbers in the
square (writing very small). At first, each number might be a pos-
sibility, but as the board fills up, more and more of the possibilities
are crossed off (or erased). For example, if the number 1 is assigned
to a square, then by process of elimination, you can cross off the 1

32 3. REGISTER ALLOCATION

pencil mark from all the squares in the same row, column, and re-
gion. Many Sudoku computer games provide automatic support for
Pencil Marks. This heuristic also reduces the degree of branching in
the search tree.

The Pencil Marks technique corresponds to the notion of color
saturation due to Brélaz [3]. The saturation of a node, in Sudoku
terms, is the number of possibilities that have been crossed off using
the process of elimination mentioned above. In graph terminology,
we have the following definition:

saturation(u) = |{c | ∃v.v ∈ Adj(u) and color(v) = c}|
where Adj(u) is the set of nodes adjacent to u and the notation |S|
stands for the size of the set S.

Using the Pencil Marks technique leads to a simple strategy for
filling in numbers: if there is a square with only one possible num-
ber left, then write down that number! But what if there aren’t any
squares with only one possibility left? One brute-force approach is to
just make a guess. If that guess ultimately leads to a solution, great.
If not, backtrack to the guess and make a different guess. Of course,
this is horribly time consuming. One standard way to reduce the
amount of backtracking is to use the most-constrained-first heuris-
tic. That is, when making a guess, always choose a square with the
fewest possibilities left (the node with the highest saturation). The
idea is that choosing highly constrained squares earlier rather than
later is better because later there may not be any possibilities left.

In some sense, register allocation is easier than Sudoku because
we can always cheat and add more numbers by spilling variables to
the stack. Also, we’d like to minimize the time needed to color the
graph, and backtracking is expensive. Thus, it makes sense to keep
the most-constrained-first heuristic but drop the backtracking in fa-
vor of greedy search (guess and just keep going). Figure 4 gives the
pseudo-code for this simple greedy algorithm for register allocation
based on saturation and the most-constrained-first heuristic, which
is roughly equivalent to the DSATUR algorithm of Brélaz [3] (also
known as saturation degree ordering (SDO) [7, 15]). Just as in Su-
doku, the algorithm represents colors with integers, with the first k
colors corresponding to the k registers in a given machine and the
rest of the integers corresponding to stack locations.

3.4. Generate spill code

In this pass we need to adjust the program to take into account
our decisions regarding the locations of the local variables. Recall

3.4. GENERATE SPILL CODE 33

Algorithm: DSATUR
Input: the inference graph G
Output: an assignment color(v) for each node v ∈ G

W ← vertices(G)
while W 6= ∅ do

pick a node u from W with the highest saturation,
breaking ties randomly

find the lowest color c that is not in {color(v) | v ∈ Adj(v)}
color(u) = c
W ← W − {u}

FIGURE 4. Saturation-based greedy graph coloring algorithm.

that x86 assembly only allows one operand per instruction to be a
memory access. For instance, suppose we have a move movl y, x

where x and y are assigned to different memory locations on the
stack. We need to replace this instruction with two instructions, one
that moves the contents of y into a register and then another instruc-
tion that moves the register’s contents into x. But what register? We
could reserve a register for this purpose, and use the same register
for every move between two stack locations. However, that would
decrease the number of registers available for other uses, sometimes
requiring the allocator to spill more variables.

Instead, we recommend creating a new temporary variable (not
yet assigned to a register or stack location) and rerunning the register
allocator on the new program, where movl y, x is replaced by

movl y, tmp0

movl tmp0, x

The tmp0 variable will have a very short live range, so it does not
make the overall graph coloring problem harder to solve. How-
ever, to prevent tmp0 from being spilled and then needing yet an-
other temporary, we recommend marking tmp0 as “unspillable” and
changing the graph coloring algorithm with respect to how it picks
the next node. Instead of breaking ties randomly between nodes
with equal saturation, give preference to nodes marked as unspill-
able.

If you did not need to introduce any new temporaries, then reg-
ister allocation is complete. Otherwise, you need to go back and do

34 3. REGISTER ALLOCATION

another iteration of live variable analysis, graph building, graph col-
oring, and generating spill code. When you start the next iteration,
do not start from scratch; keep the spill decisions, that is, which vari-
ables are spilled and their assigned stack locations, but redo the allo-
cation for the new temporaries and the variables that were assigned
to registers.

3.5. Assign homes and remove trivial moves

Once the register allocation algorithm has settled on a coloring,
update the program by replacing variables with their homes: reg-
isters or stack locations. In addition, delete trivial moves. That is,
wherever you have a move between two variables, such as

movl y, x

where x and y have been assigned to the same location (register or
stack location), delete the move instruction.

EXERCISE 3.1. Update your compiler to perform register alloca-
tion. Test your updated compiler on your suite of test cases to make
sure you haven’t introduced bugs. The suggested organization of
your compiler is shown in Figure 7. What is the time complexity
of your register allocation algorithm? If it is greater than O(n log n),
find a way to make it O(n log n), where n is the number of variables
in the program.

3.6. Read more about register allocation

The general graph coloring problem is NP-complete [6], so find-
ing an optimal coloring (fewest colors) takes exponential time (for
example, by using a backtracking algorithm). However, there are
many algorithms for finding good colorings and the search for even
better algorithms is an ongoing area of research. The most widely
used coloring algorithm for register allocation is the classic algo-
rithm of Chaitin [5]. Briggs describes several improvements to the
classic algorithm [4]. Numerous others have also made refinements
and proposed alternative algorithms. The interested reader can google
“register allocation”.

More recently, researchers have noticed that the interference graphs
that arise in compilers using static single-assignment form have a
special property, they are chordal graphs. This property allows a
simple algorithm to find optimal colorings [8]. Furthermore, even if
the compiler does not use static single-assignment form, many inter-
ference graphs are either chordal or nearly chordal [16].

3.6. READ MORE ABOUT REGISTER ALLOCATION 35

Select
InstructionsLex & Parse Python AST

Python File

x86 Assembly File

Flat
Python AST

Flatten
Expressions

Build Interefence
GraphColor the Graph

Introduce Spill
Code Assign Homes Print x86

x86 IR

x86 IR
+ graph

x86 IR
+ coloring

x86 IR x86 IR

Liveness
Analysis

x86 IR
+ liveness

FIGURE 5. Suggested organization of the compiler.

The chordal graph coloring algorithm consists of putting two
standard algorithms together. The first algorithm orders the nodes
so that that the next node in the sequence is always the node that is
adjacent to the most nodes further back in the sequence. This algo-
rithm is called the maximum cardinality search algorithm (MCS) [18].
The second algorithm is the greedy coloring algorithm, which sim-
ply goes through the sequence of nodes produced by MCS and as-
signs a color to each node. The ordering produced by the MCS is
similar to the most-constrained-first heuristic: if you’ve already col-
ored many of the neighbors of a node, then that node likely does
not have many possibilities left. The saturation based algorithm pre-
sented in Section 3.3 takes this idea a bit further, basing the choice
of the next vertex on how many colors have been ruled out for each
vertex.

CHAPTER 4

Data types and polymorphism

The main concepts in this chapter are:
polymorphism: dynamic type checking and dynamic dispatch,
control flow: computing different values depending on a con-

ditional expression,
compile time versus run time: the execution of your compiler

that performs transformations of the input program versus
the execution of the input program after compilation,

type systems: identifying which types of values each expres-
sion will produce, and

heap allocation: storing values in memory.

4.1. Syntax of P1

The P0 subset of Python only dealt with one kind of data type:
plain integers. In this chapter we add Booleans, lists and dictionar-
ies. We also add some operations that work on these new data types,
thereby creating the P1 subset of Python. The syntax for P1 is shown
in Figure 1. We give only the abstract syntax (i.e., assume that all
ambiguity is resolved). Any ambiguity is resolved in the same man-
ner as Python. In addition, all of the syntax from P0 is carried over
to P1 unchanged.

A Python list is a sequence of elements. The standard python in-
terpreter uses an array (a contiguous block of memory) to implement
a list. A Python dictionary is a mapping from keys to values. The
standard python interpreter uses a hashtable to implement dictionar-
ies.

4.2. Semantics of P1

One of the defining characteristics of Python is that it is a dynam-
ically typed language. What this means is that a Python expression
may result in many different types of values. For example, the fol-
lowing conditional expression might result in an integer or a list.

>>> 2 if input() else [1, 2, 3]

37

38 4. DATA TYPES AND POLYMORPHISM

key_datum ::= expression ":" expression

subscription ::= expression "[" expression "]"

expression ::= "True" | "False"

| "not" expression

| expression "and" expression

| expression "or" expression

| expression "==" expression

| expression "!=" expression

| expression "if" expression "else" expression

| "[" expr_list "]"

| "{" key_datum_list "}"

| subscription

| expression "is" expression

expr_list ::= ε
| expression

| expression "," expr_list

key_datum_list ::= ε
| key_datum

| key_datum "," key_datum_list

target ::= identifier

| subscription

simple_statement ::= target "=" expression

FIGURE 1. Syntax for the P1 subset of Python. (In ad-
dition to the syntax of P0.)

In a statically typed language, such as C++ or Java, the above expres-
sion would not be allowed; the type checker disallows expressions
such as the above to ensure that each expression can only result in
one type of value.

Many of the operators in Python are defined to work on many
different types, often performing different actions depending on the
run-time type of the arguments. For example, addition of two lists
performs concatenation.

>>> [1, 2, 3] + [4, 5, 6]

[1, 2, 3, 4, 5, 6]

For the arithmetic operators, True is treated as if it were the inte-
ger 1 and False is treated as 0. Furthermore, numbers can be used
in places where Booleans are expected. The number 0 is treated as
False and everything else is treated as True. Here are a few exam-
ples:

>>> False + True

4.2. SEMANTICS OF P1 39

1

>>> False or False

False

>>> 1 and 2

2

>>> 1 or 2

1

Note that the result of a logic operation such as and and or does
not necessarily return a Boolean value. Instead, e1 and e2 evaluates
expression e1 to a value v1. If v1 is equivalent to False, the result of
the and is v1. Otherwise e2 is evaluated to v2 and v2 is the result of the
and. The or operation works in a similar way except that it checks
whether v1 is equivalent to True.

A list may be created with an expression that contains a list of
its elements surrounded by square brackets, e.g., [3,1,4,1,5,9] cre-
ates a list of six integers. The nth element of a list can be accessed
using the subscript notation l[n] where l is a list and n is an integer
(indexing is zero based). For example, [3,1,4,1,5,9][2] evaluates
to 4. The nth element of a list can be changed by using a subscript
expression on the left-hand side of an assignment. For example, the
following fixes the 4th digit of π.

>>> x = [3,1,4,8,5,9]

>>> x[3] = 1

>>> print x

[3, 1, 4, 1, 5, 9]

A dictionary is created by a set of key-value bindings enclosed in
braces. The key and value expression are separated by a colon. You
can lookup the value for a key using the bracket, such as d[7] below.
To assign a new value to an existing key, or to add a new key-value
binding, use the bracket on the left of an assignment.

>>> d = {42: [3,1,4,1,5,9], 7: True}

>>> d[7]

True

>>> d[42]

[3, 1, 4, 1, 5, 9]

>>> d[7] = False

>>> d

{42: [3, 1, 4, 1, 5, 9], 7: False}

>>> d[0] = 1

>>> d[0]

1

40 4. DATA TYPES AND POLYMORPHISM

With the introduction of lists and dictionaries, we have entities
in the language where there is a distinction between identity (the is

operator) and equality (the == operator). The following program, we
create two lists with the same elements. Changing list x does not
affect list y.

>>> x = [1,2]

>>> y = [1,2]

>>> print x == y

True

>>> print x is y

False

>>> x[0] = 3

>>> print x

[3, 2]

>>> print y

[1, 2]

Variable assignment is shallow in that it just points the variable
to a new entity and does not affect the entity previous referred to by
the variable. Multiple variables can point to the same entity, which
is called aliasing.

>>> x = [1,2,3]

>>> y = x

>>> x = [4,5,6]

>>> print y

[1, 2, 3]

>>> y = x

>>> x[0] = 7

>>> print y

[7, 5, 6]

EXERCISE 4.1. Read the sections of the Python Reference Manual
that apply to P1: 3.1, 3.2, 5.2.2, 5.2.4, 5.2.6, 5.3.2, 5.9, and 5.10.

EXERCISE 4.2. Write at least ten programs in the P1 subset of
Python that help you understand the language. Look for corner
cases or unusual aspects of the language to test in your programs.

4.3. New Python AST classes

Figure 2 shows the additional Python classes used to represent
the AST nodes of P1. Python represents True and False as variables
(using the Name AST class) with names ’True’ and ’False’. Python
allows these names to be assigned to, but for P1, you may assume
that they cannot written to (i.e., like input). The Compare class is

http://docs.python.org/ref/objects.html
http://docs.python.org/ref/types.html
http://docs.python.org/ref/atom-literals.html
http://docs.python.org/ref/lists.html
http://docs.python.org/ref/dict.html
http://docs.python.org/ref/subscriptions.html
http://docs.python.org/ref/comparisons.html
http://docs.python.org/ref/Booleans.html

4.4. COMPILING POLYMORPHISM 41

for representing comparisons such as == and !=. The expr attribute
of Compare is for the first argument and the ops member contains a
list of pairs, where the first item of each pair is a string specifying
the operation, such as ’==’, and the second item is the argument.
For P1 we are guaranteed that this list only contains a single pair.
The And and Or classes each contain a list of arguments, held in the
nodes attribute and for P1 this list is guaranteed to have length 2.
The Subscript node represents accesses to both lists and dictionar-
ies and can appear within an expression or on the left-hand-side of
an assignment. The flags attribute should be ignored for the time
being.

class Compare(Node):

def __init__(self, expr, ops):

self.expr = expr

self.ops = ops

class Or(Node):

def __init__(self, nodes):

self.nodes = nodes

class And(Node):

def __init__(self, nodes):

self.nodes = nodes

class Not(Node):

def __init__(self, expr):

self.expr = expr

class List(Node):

def __init__(self, nodes):

self.nodes = nodes

class Dict(Node):

def __init__(self, items):

self.items = items

class Subscript(Node):

def __init__(self, expr, flags, subs):

self.expr = expr

self.flags = flags

self.subs = subs

class IfExp(Node):

def __init__(self, test, then, else_):

self.test = test

self.then = then

self.else_ = else_

FIGURE 2. The Python classes for P1 AST nodes.

4.4. Compiling polymorphism

As discussed earlier, a Python expression may result in different
types of values and that the type may be determined during program
execution (at run-time). In general, the ability of a language to allow
multiple types of values to be returned from the same expression, or
be stored at the same location in memory, is called polymorphism. The
following is the dictionary definition for this word.

pol•y•mor•phism
noun
the occurrence of something in several different forms

The term “polymorphism” can be remembered from its Greek roots:
“poly” means “many” and “morph” means “form”.

Recall the following example of polymorphism in Python.

42 4. DATA TYPES AND POLYMORPHISM

2 if input() else [1, 2, 3]

This expression sometimes results in the integer 2 and sometimes in
the list [1, 2, 3].

>>> 2 if input() else [1, 2, 3]

1

2

>>> 2 if input() else [1, 2, 3]

0

[1, 2, 3]

Consider how the following program would be flattened into a
sequence of statements by our compiler.

print 2 if input() else [1, 2, 3]

We introduce a temporary variable tmp1 which could point to either
an integer or a list depending on the input.

tmp0 = input()

if tmp0:

tmp1 = 2

else:

tmp1 = [1, 2, 3]

print tmp1

Thinking further along in the compilation process, we end up as-
signing variables to registers, so we’ll need a way for a register to
refer to either an integer or a list. Note that in the above, when we
print tmp1, we’ll need some way of deciding whether tmp1 refers to
an integer or a list. Also, note that a list could require many more
bytes than what could fit in a registers.

One common way to deal with polymorphism is called boxing.
This approach places all values on the heap and passes around point-
ers to values in registers. A pointer has the same size regardless of
what it points to, and a pointer fits into a register, so this provides
a simple solution to the polymorphism problem. When allocating a
value on the heap, some space at the beginning is reserved for a tag
(an integer) that says what type of value is stored there. For example,
the tag 0 could mean that the following value is an integer, 1 means
that the value is a Boolean, etc.

Boxing comes with a heavy price: it requires accessing memory
which is extremely slow on modern CPUs relative to accessing val-
ues from registers. Suppose a program just needs to add a couple
integers. Written directly in x86 assembly, the two integers would be
stored in registers and the addition instruction would work directly

4.4. COMPILING POLYMORPHISM 43

on those registers. In contrast, with boxing, the integers must be first
loaded from memory, which could take 100 or more cycles. Further-
more, the space needed to store an integer has doubled: we store a
pointer and the integer itself.

To speed up common cases such as integers and arithmetic, we
can modify the boxing approach as follows. Instead of allocating in-
tegers on the heap, we can instead go ahead and store them directly
in a register, but reserve a couple bits for a tag that says whether
the register contains an integer or whether it contains a pointer to a
larger value such as a list. This technique is somewhat questionable
from a correctness perspective as it reduces the range of plain inte-
gers that we can handle, but it provides such a large performance
improvement that it is hard to resist.

We will refer to the particular polymorphic representation sug-
gested in these notes as pyobj. The file runtime.c includes several
functions for working with pyobj, and those functions can provide
inspiration for how you can write x86 assembly that works with
pyobj. The two least-significant bits of a pyobj are used for the tag;
the following C function extracts the tag from a pyobj.

typedef long int pyobj;

#define MASK 3 /∗ 3 is 11 in binary ∗/
int tag(pyobj val) { return val & MASK; }

The following two functions check whether the pyobj contains an
integer or a Boolean.

#define INT_TAG 0 /∗ 0 is 00 in binary ∗/
#define BOOL_TAG 1 /∗ 1 is 01 in binary ∗/
int is_int(pyobj val) { return (val & MASK) == INT_TAG; }

int is_bool(pyobj val) { return (val & MASK) == BOOL_TAG; }

If the value is too big to fit in a register, we set both tag bits to 1

(which corresponds to the decimal 3).

#define BIG_TAG 3 /∗ 3 is 11 in binary ∗/
int is_big(pyobj val) { return (val & MASK) == BIG_TAG; }

The tag pattern 10 is reserved for later use.
The following C functions in runtime.c provide a way to con-

vert from integers and Boolean values into their pyobj representa-
tion. The idea is to move the value over by 2 bits (losing the top two
bits) and then stamping the tag into those 2 bits.

#define SHIFT 2

pyobj inject_int(int i) { return (i << SHIFT) | INT_TAG; }

pyobj inject_bool(int b) { return (b << SHIFT) | BOOL_TAG; }

44 4. DATA TYPES AND POLYMORPHISM

The next set of C functions from runtime.c provide a way to extract
an integer or Boolean from its pyobj representation. The idea is sim-
ply to shift the values back over by 2, overwriting the tag bits. Note
that before applying one of these projection functions, you should
first check the tag so that you know which projection function should
be used.

int project_int(pyobj val) { return val >> SHIFT; }

int project_bool(pyobj val) { return val >> SHIFT; }

The following C structures define the heap representation for big
values. The hashtable structure is defined in the provided hashtable
C library.

enum big_type_tag { LIST, DICT };

struct list_struct {

pyobj* data;

unsigned int len;

};

typedef struct list_struct list;

struct pyobj_struct {

enum big_type_tag tag;

union {

struct hashtable* d;

list l;

} u;

};

typedef struct pyobj_struct big_pyobj;

When we grow the subset of Python to include more features, such
as functions and objects, the alternatives within big type tag will
grow as will the union inside of pyobj struct.

The following C functions from runtime.c provide a way to con-
vert from big pyobj* to pyobj and back again.

pyobj inject_big(big_pyobj* p) { return ((long)p) | BIG_TAG; }

big_pyobj* project_big(pyobj val)

{ return (big_pyobj*)(val & ~MASK); }

The inject big function above reveals why we chose to use two bits
for tagging. It turns out that on Linux systems, malloc always aligns
newly allocated memory at addresses that are multiples of four. This
means that the two least significant bits are always zero! Thus, we
can use that space for the tag without worrying about destroying

4.5. THE EXPLICATE PASS 45

the address. We can simply zero-out the tag bits to get back a valid
address.

The runtime.c file also provides a number of C helper functions
for performing arithmetic operations and list/dictionary operations
on pyobj.

int is_true(pyobj v);

void print_any(pyobj p);

pyobj input_int();

big_pyobj* create_list(pyobj length);

big_pyobj* create_dict();

pyobj set_subscript(pyobj c, pyobj key, pyobj val);

pyobj get_subscript(pyobj c, pyobj key);

big_pyobj* add(big_pyobj* x, big_pyobj* y);

int equal(big_pyobj* x, big_pyobj* y);

int not_equal(big_pyobj* x, big_pyobj* y);

You will need to generate code to do tag testing, to dispatch to
different code depending on the tag, and to inject and project values
from pyobj. We recommend accomplishing this by adding a new
compiler pass after parsing and in front of flattening. For lack of a
better name, we call this the ’explicate’ pass because it makes explicit
the types and operations.

4.5. The explicate pass

As we have seen in Section 4.4, compiling polymorphism requires
a representation at run time that allows the code to dispatch between
operations on different types. This dispatch is enabled by using
tagged values.

At this point, it is helpful to take a step back and reflect on why
polymorphism in P1 causes a large shift in what our compilers must
do as compared to compiling P0 (which is completely monomor-
phic). Consider the following assignment statement:

(4.1) y = x + y

As a P0 program, when our compiler sees the x + y expression at
compile time, it knows immediately that x and y must correspond to
integers at run time. Therefore, our compiler can select following x86
instruction to implement the above assignment statement.

addl x, y

This x86 instruction has the same run-time behavior as the above
assignment statement in P0 (i.e., they are semantically equivalent).

46 4. DATA TYPES AND POLYMORPHISM

Now, consider the example assignment statement (4.1) again but
now as a P1 program. At compile time, our compiler has no way to
know whether x + y corresponds to an integer addition, a list con-
catenation, or an ill-typed operation. Instead, it must generate code
that makes the decision on which operation to perform at run time. In
a sense, our compiler can do less at compile now: it has less certain
information at compile time and thus must generate code to make
decisions at run time. Overall, we are trading off execution speed
with flexibility with the introduction of polymorphic operations in
our input language.

To provide intuition for this trade off, let us consider a real world
analogy. Suppose you a planning a hike for some friends. There are
two routes that you are considering (let’s say the two routes share
the same initial path and fork at some point). Basically, you have two
choices: you can decide on a route before the hike (at “plan time”) or
you can wait to make the decision with your friends during the hike
(at “hike time”). If you decide beforehand at plan time, then you can
simplify your planning; for example, you can input GPS coordinates
for the route on which you decided and leave your map for the other
route at home. If you want to be more flexible and decide the route
during the hike, then you have to bring maps for both routes in order
to have sufficient information to make at hike time. The analogy to
your compiler is that to be more flexible at run time (∼ hike time),
then your compilation (∼ hike planning) requires you to carry tag
information at run time (∼ a map at hike time).

Returning to compiling P1, Section 4.4 describes how we will rep-
resent the run-time tags. The purpose of the explicate pass is to gen-
erate the dispatching code (i.e., the decision making code). After
the explicate pass is complete, the explicit AST that is produced will
make explicit operations on integers and Booleans. In other words,
all operations that remain will be apply to integers, Booleans, or
big pyobj*s. Let us focus on the polymorphic + operation in the
the example assignment statement (4.1). The AST produced by the
parser is as follows:

(4.2) Add((Name(’x’), Name(’y’))) .

We need to create an AST that captures deciding which “+” operation
to use based on the run-time types of x and y.

For +, we have three possibilities: integer addition, list concate-
nation, or type error. We want a case for integer addition, as we can
implement that operation efficiently with an addl instruction. To de-
cide whether we have list concatenation or error, we decide to leave

4.5. THE EXPLICATE PASS 47

that dispatch to a call in runtime.c, as a list concatenation is expen-
sive anyway (i.e., requires going to memory). The add function

big_pyobj* add(big_pyobj* x, big_pyobj* y)

in runtime.c does exactly what is described here. To represent the
two cases in an explicit AST, we will reuse the Add node for integer
addition and a CallFunc node to add for the big_pyobj* addition.
Take note that the Add node before the explicate pass represents the
polymorphic + of P1, but it represents integer addition in an explicit
AST after the explicate pass. Another choice could have been to cre-
ate an IntegerAdd node kind to make it clear that it applies only to
integers.

Now that we have decided which node kinds will represent which
+ operations, we know that the explicit AST for expression (4.2) is in-
formally as follows:

IfExp(

tag of Name(’x’) is ‘int or bool’
and tag of Name(’y’) is ‘int or bool’,

convert back to ’pyobj’
Add(convert to ‘int’ Name(’x’), convert to ‘int’ Name(’y’)),

IfExp(

tag of Name(’x’) is ‘big’
and tag of Name(’y’) is ‘big’,

convert back to ’pyobj’
CallFunc(Name(’add’),

[convert to ’big’ Name(’x’), convert to ’big’ Name(’y’)]),

CallFunc(... abort because of run-time type error ...)

)

)

Looking at the above explicit AST, our generated code will at run
time look at the tag of the polymorphic values for x and y to decide
whether it is an integer add (i.e., Add(. . .)) or a big_pyobj* add (i.e.,
CallFunc(Name(’add’), . . .)).

What are these “convert” operations? Recall that at run time we
need a polymorphic representation of values (i.e., some 32-bit value
that can be an ’int’, ’bool’, ’list’, or ’dict’), which we call pyobj. It is
a pyobj that has a tag. However, the integer add at run time (which

48 4. DATA TYPES AND POLYMORPHISM

corresponds to the Add AST node here at compile time) should take
“pure” integer arguments (i.e., without tags). Similar, the add func-
tion call takes big_pyobj* arguments (not pyobj). We need to gen-
erate code that converts pyobjs to other types at appropriate places.
From Section 4.4, we have described how we get the integer, boolean,
or big_pyobj* part from a pyobj by shifting or masking. Thus, for
“convert to whatever” in the above, we need insert AST nodes that
represent these type conversions. To represent these new type con-
version operations, we recommend creating two new AST classes:
ProjectTo that represents converting from pyobj to some other type
and InjectFrom that represents converting to pyobj from some other
type. Analogously, we create a GetTag AST class to represent tag
lookup, which will be implemented with the appropriate masking.

Note that we might have ben tempted to insert AST nodes that
represent directly shifting or masking. While this choice could work,
we choose to separate the conceptual operation (i.e., type conver-
sion) from the actual implementation mechanism (i.e., shifting or
masking). Our instruction selection phase will implement ProjectTo
and InjectFrom with the appropriate shift or masking instructions.

As a compiler writer, there is one more concern in implement-
ing the explicate pass. Suppose we are implementing the case for
explicating Add, that is, we are implementing the transformation in
general for

Add((e1, e2))

where e1, e2 are arbitrary subexpressions. Observe in the explicit
AST example above, Name(’x’) corresponds to e1 and Name(’y’) to e2.
Furthermore, observe that Name(’x’) and Name(’y’) each appear four
times in the output explicit AST. If instead of Names, we have arbitrary
expressions and duplicate them in the same manner, we run into cor-
rectness issues. In particular, if e1 or e2 are side-effecting expressions
(i.e., include input()), then duplicating them would change the se-
mantics of the program (e.g., we go from reading once to multiple
times). Thus, we need to evaluate the subexpressions once before
duplicating them, that is, we can bind the subexpressions to Names
and then use the Names in their place.

We introduce a Let construct for this purpose:

Let(var, rhs, body) .

The Let construct is needed so that you can use the result of an
expression multiple times without duplicating the expression itself,
which would duplicate its effects. The semantics of the Let is that

4.6. TYPE CHECKING THE EXPLICIT AST 49

class GetTag(Node):

def __init__(self, arg):

self.arg = arg

class InjectFrom(Node):

def __init__(self, typ, arg):

self.typ = typ

self.arg = arg

class ProjectTo(Node):

def __init__(self, typ, arg):

self.typ = typ

self.arg = arg

class Let(Node):

def __init__(self, var, rhs, body):

self.var = var

self.rhs = rhs

self.body = body

FIGURE 3. New internal AST classes for the output of
the explicate pass.

the rhs should be evaluated and then assigned to the variable var.
Then the body should be evaluated where the body can refer to the
variable. For example, the expression

Add((Add((Const(1), Const(2))) , Const(3)))

should evaluate to the same value as
Let(Name(’x’), Add((Const(1), Const(2))),

Add((Name(’x’) , Const(3))))

(i.e., they are equivalent semantically).
Overall, to represent the new operations in your abstract syntax

trees, we recommend creating the new AST classes in Figure 3.

EXERCISE 4.3. Implement an explicate pass that takes a P1 AST
with polymorphic operations and explicates it to produce an explicit
AST where all such polymorphic operations have been transformed
to dispatch code to monomorphic operations.

4.6. Type checking the explicit AST

A good way to catch errors in your compiler is to check whether
the type of value produced by every expression makes sense. For

50 4. DATA TYPES AND POLYMORPHISM

example, it would be an error to have a projection nested inside of
another projection:

ProjectTo(’int’,

ProjectTo(’int’, InjectFrom(’int’, Const(1)))

)

The reason is that projection expects the subexpression to be a pyobj.
What we describe in this section is a type checking phase applied

to the explicit AST produced as a sanity check for your explicate
pass. The explicate pass can be tricky to get right, so we want to
have way to detect errors in the explicate pass before going through
the rest of the compiler. Note that the type checking that we describe
here does not reject input programs at compile time as we may be
used to from using statically-typed languages (e.g., Java). Rather,
any type errors that result from using the checker that we describe
here points to a bug in the explicate pass.

It is common practice to specify what types are expected by writ-
ing down an “if-then” rule for each kind of AST node. For example,
the rule for ProjectTo is:

For any expression e and any type T selected from
the set { int, bool, big }, if e has type pyobj, then
ProjectTo(T, e) has type T .

It is also common practice to write “if-then” rules using a horizontal
line, with the “if” part written above the line and the “then” part
written below the line.

e has type pyobj T ∈ {int, bool, big}
ProjectTo(T, e) has type T

Because the phrase “has type” is repeated so often in these type
checking rules, it is abbreviated to just a colon. So the above rule
is abbreviated to the following.

e : pyobj T ∈ {int, bool, big}
ProjectTo(T, e) : T

The Let(var, rhs, body) construct poses an interesting chal-
lenge. The variable var is assigned the rhs and is then used inside
body. When we get to an occurrence of var inside body, how do we
know what type the variable will be? The answer is that we need a
dictionary to map from variable names to types. A dictionary used
for this purpose is usually called an environment (or in older books, a
symbol table). The capital Greek letter gamma, written Γ, is typically
used for referring to environments. The notation Γ, x : T stands for

4.7. UPDATE EXPRESSION FLATTENING 51

making a copy of the environment Γ and then associating T with the
variable x in the new environment. The type checking rules for Let
and Name are therefore as follows.

e1 : T1 in Γ e2 : T2 in Γ, x : T1
Let(x, e1, e2) : T2 in Γ

Γ[x] = T

Name(x) : T in Γ

Type checking has roots in logic, and logicians have a tradition of
writing the environment on the left-hand side and separating it from
the expression with a turn-stile (`). The turn-stile does not have any
intrinsic meaning per se. It is punctuation that separates the envi-
ronment Γ from the expression e. So the above typing rules are com-
monly written as follows.

Γ ` e1 : T1 Γ, x : T1 ` e2 : T2
Γ ` Let(x, e1, e2) : T2

Γ[x] = T

Γ ` Name(x) : T

Overall, the statement Γ ` e : T is an example of what is called
a judgment. In particular, this judgment says, “In environment Γ,
expression e has type T .” Figure 4 shows the type checking rules for
all of the AST classes in the explicit AST.

EXERCISE 4.4. Implement a type checking function that makes
sure that the output of the explicate pass follows the rules in Figure 4.
Also, extend the rules to include checks for statements.

4.7. Update expression flattening

The output AST from the explicate pass contains a number of
new AST classes that were not handled by the flatten function
from chapter 1. The new AST classes are IfExp, Compare, Subscript,
GetTag, InjectFrom, ProjectTo, and Let. The Let expression simply
introduces an extra assignment, and therefore no Let expressions
are needed in the output. When flattening the IfExp expression,
I recommend using an If statement to represent the control flow
in the output. Alternatively, you could reduce immediately to la-
bels and jumps, but that makes liveness analysis more difficult. In
liveness analysis, one needs to know what statements can preceed a
given statement. However, in the presense of jump instructions, you
would need to build an explicit control flow graph in order to know
the preceeding statements. Instead, I recommend postponing the re-
duction to labels and jumps to after register allocation, as discussed
below in Section 4.10.

EXERCISE 4.5. Update your flatten function to handle the new
AST classes. Alternatively, rewrite the flatten function into a visitor

52 4. DATA TYPES AND POLYMORPHISM

n is an integer
Γ ` Const(n) : int

b is a Boolean
Γ ` Const(b) : bool

Γ[x] = T

Γ ` Name(x) : T

Γ ` e1 : int Γ ` e2 : int

Γ ` Add(e1, e2) : int
Γ ` e : int

Γ ` UnarySub(e) : int

Γ ` e1 : bool Γ ` e2 : T Γ ` e3 : T

Γ ` IfExp(e1, e2, e3) : T

Γ ` e : T
T ∈ {int, bool, big}

Γ ` InjectFrom(T, e) : pyobj

Γ ` e : pyobj
T ∈ {int, bool, big}

Γ ` ProjectTo(T, e) : T

Γ ` e : pyobj

Γ ` GetTag(e) : int

Γ ` e1 : pyobj Γ ` e2 : pyobj

Γ ` Compare(e1, [(is, e2)]) : bool

Γ ` e1 : T Γ ` e2 : T T ∈ {int, bool} op ∈ {==, !=}
Γ ` Compare(e1, [(op, e2)]) : bool

Γ ` e1 : T1 Γ, x : T1 ` e2 : T2
Γ ` Let(x, e1, e2) : T2

Γ ` e1 : pyobj Γ ` e2 : pyobj

Γ ` Subscript(e1, e2) : pyobj

FIGURE 4. Type checking rules for expressions in the
explicit AST.

class and then create a new visitor class that inherits from it and that
implements visit methods for the new AST nodes.

4.8. Update instruction selection

The instruction selection phase should be updated to handle the
new AST classes If, Compare, Subscript, GetTag, InjectFrom, and
ProjectTo. Consult Appendix 6.4 for suggestions regarding which
x86 instructions to use for translating the new AST classes. Also, you
will need to update the function call for printing because you should
now use the print any function.

EXERCISE 4.6. Update your instruction selection pass to handle
the new AST classes.

4.10. REMOVING STRUCTURED CONTROL FLOW 53

4.9. Update register allocation

Looking back at Figure 5, there are several sub-passes within the
register allocation pass, and each sub-pass needs to be updated to
deal with the new AST classes.

In the liveness analysis, the most interesting of the new AST classes
is the If statement. What liveness information should be propagated
into the “then” and “else” branch and how should the results from
the two branches be combined to give the result for the entire If? If
we could somehow predict the result of the test expression, then we
could select the liveness results from one branch or the other as the
results for the If. However, its impossible to predict this in general
(e.g., the test expression could be input())), so we need to make a
conservative approximation: we assume that either branch could be
taken, and therefore we consider a variable to be live if it is live in
either branch.

The code for building the interference graph needs to be updated
to handle If statements, as does the code for finding all of the local
variables. In addition, you need to account for the fact that the reg-
ister al is really part of register eax and that register cl is really part
of register ecx.

The graph coloring algorithm itself works on the interference
graph and not the AST, so it does not need to be changed.

The spill code generation pass needs to be updated to handle If

statements and the new x86 instructions that you used in the instruc-
tion selection pass.

Similarly, the code for assigning homes (registers and stack loca-
tions) to variables must be updated to handle If statements and the
new x86 instructions.

4.10. Removing structured control flow

Now that register allocation is finished, and we no longer need
to perform liveness analysis, we can lower the If statements down
to x86 assembly code by replacing them with a combination of labels
and jumps. The following is a sketch of the transformation from If

AST nodes to labels and jumps.

if x:
then instructions

else:

else instructions

=⇒

54 4. DATA TYPES AND POLYMORPHISM

cmpl $0, x
je else_label_5

then instructions
jmp end_label_5

else_label_5:

else instructions
end_label_5:

EXERCISE 4.7. Write a compiler pass that removes If AST nodes,
replacing them with combinations of labels and jumps.

4.11. Updates to print x86

You will need to update the compiler phase that translates the
x86 intermediate representation into a string containing the x86 as-
sembly code, handling all of the new instructions introduced in the
instruction selection pass and the above pass that removes If state-
ments.

Putting all of the above passes together, you should have a com-
plete compiler for P1.

EXERCISE 4.8. Extend your compiler to handle the P1 subset of
Python. You may use the parser from Python’s compiler module, or
for extra credit you can extend your own parser. Figure 5 shows the
suggested organization for your compiler.

4.11. UPDATES TO PRINT X86 55

Select
Instructions

Lex & Parse Python AST

Python File

x86 Assembly File

Flat Explicit
Python AST

Flatten
Expressions

Print x86

x86 IR
+ If

Explicate
Operations

Allocate
Registers

Explicit
Python AST

x86 IR
+ If

Remove Structured
Control Flow

x86 IR

FIGURE 5. Overview of the compiler organization.

CHAPTER 5

Functions

The main ideas in this chapter are:
first-class functions: functions are values that can be passed

as arguments to other functions, returned from functions,
stored in lists and dictionaries, assigned to variables, etc.

lexical scoping of variables: scopes separate variables with the
same name; lexical scoping dictates that a variable reference
is resolved by looking at its lexical environment.

5.1. Syntax of P2

We introduce two constructs for creating functions: the def state-
ment and the lambda expression. We also add an expression for call-
ing a function with some arguments. To keep things manageable, we
leave out function calls with keyword arguments. The concrete syn-
tax of the P2 subset of Python is shown in Figure 1. Figure 2 shows
the additional Python classes for the P2 AST.

expression ::= expression "(" expr_list ")"

| "lambda" id_list ":" expression

id_list ::= ε | identifier | identifier "," id_list

simple_statement ::= "return" expression

statement ::= simple_statement

| compound_stmt

compound_stmt ::= "def" identifier "(" id_list ")" ":" suite

suite ::= "\n" INDENT statement+ DEDENT

module ::= statement+

FIGURE 1. Concrete syntax for the P2 subset of Python.
(In addition to that of P1.)

5.2. Semantics of P2

Functions provide an important mechanism for reusing chunks
of code. If there are several places in a program that compute the
same thing, then the common code can be placed in a function and

57

58 5. FUNCTIONS

class CallFunc(Node):

def __init__(self, node, args):

self.node = node

self.args = args

class Function(Node):

def __init__(self, decorators, name, argnames, defaults, \

flags, doc, code):

self.decorators = decorators # ignore
self.name = name

self.argnames = argnames

self.defaults = defaults # ignore
self.flags = flags # ignore
self.doc = doc # ignore
self.code = code

class Lambda(Node):

def __init__(self, argnames, defaults, flags, code):

self.argnames = argnames

self.defaults = defaults # ignore
self.flags = flags # ignore
self.code = code

class Return(Node):

def __init__(self, value):

self.value = value

FIGURE 2. The Python classes for P2 ASTs.

then called from many locations. The example below defines and
calls a function. The def statement creates a function and gives it a
name.

>>> def sum(l, i, n):

... return l[i] + sum(l, i + 1, n) if i != n \

... else 0

...

>>> print sum([1,2,3], 0, 3)

6

>>> print sum([4,5,6], 0, 3)

15

Functions are first class, which means they are treated just like
other values: they may be passed as arguments to other functions,
returned from functions, stored within lists, etc.. For example, the
map function defined below has a parameter f that is applied to every
element of the list l.

>>> def map(f, l, i, n):

... return [f(l[i])] + map(f, l, i + 1, n) if i != n else []

5.2. SEMANTICS OF P2 59

Suppose we wish to square every element in an array. We can define
a square function and then use map as follows.

>>> def square(x):

... return x * x

...

>>> print map(square, [1,2,3], 0, 3)

[1, 4, 9]

The lambda expression creates a function, but does not give it a
name. Anonymous functions are handy in situations where you only
use the function in one place. For example, the following code uses a
lambda expression to tell the map function to add one to each element
of the list.

>> print map(lambda x: x + 1, [1,2,3], 0, 3)

[2, 3, 4]

Functions may be nested within one another as a consequence of
how the grammar is defined in Figure 1. Any statement may appear
in the body of a def and any expression may appear in the body of
a lambda, and functions may be created with statements or expres-
sions. Figure 3 shows an example where one function is defined
inside another function.

>>> def f(x):

... y = 4

... return lambda z: x + y + z

...

>>> f1 = f(1)

>>> print f1(3)

8

FIGURE 3. An example of a function nested inside an-
other function.

A function may refer to parameters and variables in the surrounding
scopes. In the above example, the lambda refers to the x parameter
and the y local variable of the enclosing function f.

One of the trickier aspects of functions in Python is their inter-
action with variables. A function definition introduces a new scope.
A variable assignment within a function also declares that variable
within the function’s scope. So, for example, in the following code,
the scope of the variable a is the body of function f and not the global
scope.

60 5. FUNCTIONS

>>> def f():

... a = 2

... return a

>>> f()

2

>>> a

Traceback (most recent call last):

File "<stdin>", line 1, in ?

NameError: name ’a’ is not defined

Python’s rules about variables can be somewhat confusing when
a variable is assigned in a function and has the same name as a vari-
able that is assigned outside of the function. For example, in the
following code the assignment a = 2 does not affect the variable a

in the global scope but instead introduces a new variable within the
function g.

>>> a = 3

>>> def g():

... a = 2

... return a

>>> g()

2

>>> a

3

An assignment to a variable anywhere within the function body
introduces the variable into the scope of the entire body. So, for ex-
ample, a reference to a variable before it is assigned will cause an er-
ror (even if there is a variable with the same name in an outer scope).

>>> a = 3

>>> def h():

... b = a + 2

... a = 1

... return b + a

>>> h()

Traceback (most recent call last):

File "<stdin>", line 1, in ?

File "<stdin>", line 2, in h

UnboundLocalError: local variable ’a’ referenced before

assignment

EXERCISE 5.1. Write five programs in the P2 subset of Python that
help you understand the language. Look for corner cases or unusual
aspects of the language to test in your programs.

5.3. OVERVIEW OF CLOSURE CONVERSION 61

5.3. Overview of closure conversion

The major challenge in compiling Python functions to x86 is that
functions may not be nested in x86 assembly. Therefore we must
unravel the nesting and define each function at the top level. Moving
the function definitions is straightforward, but it takes a bit more
work to make sure that the function behaves the same way it use to,
after all, many of the variables that were in scope at the point where
the function was originally defined are not in scope at the top level.

When we move a function, we have to worry about the variables
that it refers to that are not parameters or local variables. We say
that a variable reference is bound with respect to a given expression
or statement, let’s call it P , if there is an function or lambda inside P
that encloses the variable reference and that function or lambda has
that variable as a parameter or local. We say that a variable is free
with respect to an expression or statement P if there is a reference
to the variable inside P that is not bound in P . In the following, the
variables y and z are bound in function f, but the variable x is free in
function f.

x = 3

def f(y):

z = 3

return x + y + z

The definition of free variables applies in the same way to nested
functions. In the following, the variables x, y, and z are free in the
lambda expression whereas w is bound in the lambda expression. The
variable x is free in function f, whereas the variables w, y, and z are
bound in f.

x = 3

def f(y):

z = 3

return lambda w: x + y + z + w

Figure 4 gives part of the definition of a function that computes the
free variables of an expression. Finishing this function and defining
a similar function for statements is left to you.

The process of closure conversion turns a function with free vari-
ables into an behaviorally equivalent function without any free vari-
ables. A function without any free variables is called “closed”, hence
the term “closure conversion”. The main trick in closure conversion
is to turn each function into a value that contains a pointer to the
function and a list that stores the values of the free variables. This

62 5. FUNCTIONS

def free_vars(n):

if isinstance(n, Const):

return set([])

elif isinstance(n, Name):

if n.name == ’True’ or n.name == ’False’:

return set([])

else:

return set([n.name])

elif isinstance(n, Add):

return free_vars(n.left) | free_vars(n.right)

elif isinstance(n, CallFunc):

fv_args = [free_vars(e) for e in n.args]

free_in_args = reduce(lambda a, b: a | b, fv_args, set([]))

return free_vars(n.node) | free_in_args

elif isinstance(n, Lambda):

return free_vars(n.code) - set(n.argnames)

...

FIGURE 4. Computing the free variables of an expression.

value is called a closure and you’ll see that big pyobj has been ex-
panded to include a function inside the union. In the explanation
below, we’ll use the runtime function create closure to construct a clo-
sure and the runtime functions get fun ptr and get free vars to access
the two parts of a closure. When a closure is invoked, the free vari-
ables list must be passed as an extra argument to the function so that
it can obtain the values for free variables from the list.

Figure 5 shows the result of applying closure conversion to the
example in Figure 3. The lambda expression has been removed and
the associated code placed in the lambda 0 function. For each of the
free variables of the lambda (x and y), we add assignments inside the
body of lambda 0 to initialize those variables by subscripting into the
free vars 0 list. The lambda expression inside f has been replaced
by a new kind of primitive operation, creating a closure, that takes
two arguments. The first argument is the function name and the sec-
ond is a list containing the values of the free variables. Now when
we call the f function, we get back a closure. To invoke a closure,
we call the closures’ function, passing the closure’s free variable ar-
ray as the first argument. The rest of the arguments are the normal
arguments from the call site.

Note that we also created a closure for function f, even though f

was already a top-level function. The reason for this is so that at any
call site in the program, we can assume that the thing being applied

5.4. OVERVIEW OF HEAPIFYING VARIABLES 63

is a closure and use the above-described approach for translating the
function call.

def lambda_0(free_vars_0, z):

y = free_vars_0[0]

x = free_vars_0[1]

return x + y + z

def lambda_1(free_vars_1, x):

y = 4

return create closure(lambda_0, [y, x])

f = create closure(lambda_1, [])

f1 = get fun ptr(f)(get free vars(f), 1)

print get fun ptr(f1)(get free vars(f1), 3)

FIGURE 5. Closure conversion applied to the example
in Figure 3.

5.4. Overview of heapifying variables

Closure conversion, as described so far, copies the values of the
free variables into the closure’s array. This works as long as the vari-
ables are not updated by a later assignment. Consider the following
program and the output of the python interpreter.

def f(y):

return x + y

x = 2

print f(40)

The read from variable x should be performed when the function is
called, and at that time the value of the variable is 2. Unfortunately,
if we simply copy the value of x into the closure for function f, then
the program would incorrectly access an undefined variable.

We can solve this problem by storing the values of variables on
the heap and storing just a pointer to the variable’s value in the clo-
sure’s array. The following shows the result of heapification for the
above program. Now the variable x refers to a one-element list and
each reference to x has been replaced by a a subscript operation that
accesses the first element of the list (the element at index 0).

x = [0]

def f(y):

64 5. FUNCTIONS

return x[0] + y

x[0] = 2

print f(40)

Applying closure conversion after heapification gives us the follow-
ing result, which correctly preserves the behavior of the original pro-
gram.

def lambda_0(free_vars_0, y):

x = free_vars_0[0]

return x[0] + y

x = [0]

f = create closure(lambda_0, [x])

x[0] = 2

print get fun ptr(f)(get free vars(f), 40)

5.4.1. Discussion. For simplicity, we heapify any variable that
ends up in a closure. While this step feels heavy weight, it is the
most uniform and simplest solution to the problem.

There are certainly opportunities for optimization, but in general,
they require additional static analysis. For example,

• If you can tell statically that a local variable of function will
not be used after the function has returned, then you can
stack allocate it instead of heap allocating. A local variable
that cannot be used after the function returns is said to be
non-escaping, and the analysis to determine whether a vari-
able may escape is called escape analysis. In Heapify, we
perform a simplistic, very conservative escape analysis that
says any variable that ends up in closure may escape. This
analysis is quite conservative, as we may create a closure
that is only used by called functions but never returned nor
stored in the heap.
• If you can tell statically that a variable that ends up in a clo-

sure is not modified after that closure is created, then you
can instead close on the value of the variable instead of its
address (avoiding stack or heap allocation).

5.5. Compiler implementation

Figure 6 shows the suggested organization for the compiler for
this chapter. The next few subsections outline the new compiler
passes and the changes to the other passes.

5.5. COMPILER IMPLEMENTATION 65

Select
Instructions

Lex & Parse Python AST

Python File

x86 Assembly File

Flat Monomorphic
AST

Flatten
Expressions

Print x86

x86 IR
+ If

Explicate
Operations

Allocate
Registers

Monomorphic
AST

x86 IR
+ If

Remove Structured
Control Flow

x86 IR

Heapify
Variables

Closure
Conversion

Monomorphic
AST

Monomorphic
AST

Uniquify
Variables Python AST

FIGURE 6. Organization of the compiler passes.

5.5.1. The Uniquify Variables Pass. During the upcoming heap-
ify pass, we need to do a fair bit of reasoning about variables, and
this reasoning will be a lot easier if we don’t have to worry about
confusing two different variables because they have the same name.
For example, in the following code we do not need to heapify the
global x, but we do have to heapify the parameter x.

x = 3

def f(x):

return lambda y: x + y

print x

Thus, the uniquify variables pass renames every variable to make
sure that each variable has a unique name.

The main issue to keep in mind when implementing the uniquify
variables pass is determining whether a variable use references a
variable in the current scope or one in an outer scope. Python’s spec-
ification is that any variable that is assigned to (statically) is a new
local in the current function’s scope. Also recall that a def f(. . .): . . .

66 5. FUNCTIONS

is semantically equivalent to an assignment to a variable f with an
anonymous function.

The renaming can be accomplished by incrementing a global counter
and use the current value of the counter in the variable name. One
strategy is at each new scope, gather all the variables introduced by
the scope, compute their renamings (while saving the renamings in
a dictionary), and finally apply the renaming to the code.

Uniquifying the above example would result in something like
the following:

x_0 = 3

def f_1(x_2):

return lambda y_3: x_2 + y_3

print x_0

5.5.2. The Explicate Operations Pass. To simplify the later passes,
I recommend converting function definitions and lambda’s into a
common form. The common form is like a lambda, but has a body
that contains a statement instead of an expression. Instead of cre-
ating a new AST class, the Lambda class can be re-used to represent
these new kinds of lambdas. The following is a sketch of the trans-
formation for function definitions.

def name(args):

body

=⇒
name = lambda args: body

To convert lambdas to the new form, we simply put the body of the
lambda in a return statement.

lambda args: body

=⇒
lambda args: return body

5.5.3. The Heapify Variables Pass. To implement this pass we
need two helper functions: the function for computing free variables
(Figure 4) and a function for determining which variables occur free
within nested lambdas. This later function is straightforward to im-
plement. It traverses the entire program, and whenever it encounters
a lambda or function definition, it calls the free variables function, re-
moves that functions parameters and local variables from the set of
free variables, then marks the remaining variables as needing heapi-
fication. I suggest using a dictionary for recording which variables
need to be heapified.

5.5. COMPILER IMPLEMENTATION 67

Now for the main heapification function. As usual it is a recur-
sive function that traverses the AST. The function returns a new AST.
In the following we discuss the most interesting cases.

Lambda: First, compute the local variables of this lambda; I’ll
name this setL. Let P be the set of parameter names (argnames)
for this lambda. Make the recursive call on the body of the
current lambda. Let body’ be the result of the recursive call.
Then we return a lambda of the following form:

lambda P ′:
paramAllocs
paramInits
localInits
body ′

The list of parameters P ′ is the same as P except that the
parameters that need to be heapified are renamed to new
unique names. Let Ph be the parameters in P that need to be
heapified. The list of statements paramAllocs is a sequence
of assignments, each of which assigns a 1-element list to a
variable in the set Ph. The list of statements paramInits is a
sequence of assignments, each of which sets the first element
in the list referred to by the variables in Ph to the correspond-
ing renamed parameter in P ′. Let Lh be the local variables
in L that need to be heapified. The list of statements localIn-
its is a sequence of assignments, each of which assigns a 1-
element list to a variable in the set Lh.

Name: If the variable x needs to be heapified, then return the
expression x[0]. Otherwise return x unchanged.

Assign: If the left-hand side of the assignment is a AssName,
and the variable x needs to be heapified, then return the as-
signment x[0] = rhs ′, where rhs ′ has been heapified. Other-
wise return the assignment x = rhs ′.

5.5.4. The Closure Conversion Pass. To implement closure con-
version, we’ll write a recursive function that takes one parameter,
the current AST node, and returns a new version of the current AST
node and a list of function definitions that need to be added to the
global scope.

Let us look at the two interesting the cases in the closure conver-
sion functions.

68 5. FUNCTIONS

Lambda: The process of closure converting lambda expressions
is similar to converting function definitions. The lambda ex-
pression itself is converted into a closure (an expression cre-
ating a two element list) and a function definition for the
lambda is returned so that it can be placed in the global
scope. So we have

lambda params: body
=⇒
create_closure(globalname, fvs)

where globalname is a freshly generated name and fvs is a list
defined as follows

fvs = free vars(body)− params

Closure conversion is applied recursively to the body , result-
ing in a newbody and a list of function definitions. We return
the closure creating expression create_closure(globalname, fvs)

and the list of function definitions, with the following defi-
nition appended.

def globalname(fvs, params):
fvs1 = fvs[0]
fvs2 = fvs[1]
. . .
fvsn = fvs[n− 1]
return newbody

CallFunc: A function call node includes an expression that should
evaluate ef to a function and the argument expressions e1, . . . , en.
Of course, due to closure conversion, ef should evaluate to a
closure object. We therefore need to transform the CallFunc

so that we obtain the function pointer of the closure and ap-
ply it to the free variable list of the closure followed by the
normal arguments.

ef(e1, . . ., en)
=⇒
let tmp = ef in

get_fun_ptr(tmp)(get_free_vars(tmp), e1, . . ., en)

In this pass it is helpful to use a different AST class for in-
direct function calls, whose operator will be the result of an
expression such as above, versus direct calls to the runtime
C functions.

5.5. COMPILER IMPLEMENTATION 69

5.5.5. The Flatten Expressions Pass. The changes to this pass are
straightforward. You just need to add cases to handle functions, re-
turn statements, and indirect function calls.

5.5.6. The Select Instructions Pass. You need to update this pass
to handle functions, return statements, and indirect function calls. At
this point in the compiler it is convenient to create an explicit main
function to hold all the statements other then the function defini-
tions.

5.5.7. The Register Allocation Pass. The primary change needed
in this pass is that you should perform register allocation separately
for each function (i.e., you perform liveness analysis, construct an in-
terference graph, and assign registers for each function separately).

Make sure that your Select Instructions pass saves the callee-save
registers on the stack in the prologue of each function and restores
them in the epilogue. A small optimization would be to wait until
after register allocation to decide which callee-save registers need to
be saved (rather than always saving all).

5.5.8. The Print x86 Pass. You need to update this pass to handle
functions, return statements, and indirect function calls

EXERCISE 5.2. Extend your compiler to handle P2.

CHAPTER 6

Objects

The main ideas for this chapter are:
objects and classes: objects are values that bundle together some

data (attributes) and some functions (methods). Classes are
values that describe how to create objects.

attributes and methods: Both objects and classes can contain
attributes and methods. An attribute maps a name to a value
and a method maps a name to a function.

inheritance: One class may inherit from one or more other
classes, thereby gaining access to the methods in the inher-
ited classes.

6.1. Syntax of P3

The concrete syntax of P3 is shown in Figure 1 and the abstract
syntax (the Python AST classes) is shown in Figure 2.

expression ::= expression "." identifier

expression_list ::= expression ("," expression)* [","]

statement ::= "class" name ["(" expression_list ")"] ":" suite

| "if" expression ":" suite "else" ":" suite

| "while" expression ":" suite

target ::= expression "." identifier

FIGURE 1. Concrete syntax for the P3 subset of Python.
(In addition to that of P2.)

6.2. Semantics of P3

This week we add a statement for creating classes. For example,
the following statement creates a class named C.

>>> class C:

... x = 42

Assignments in the body of a class create class attributes. The above
code creates a class C with an attribute x. Class attributes may be
accessed using the dot operator. For example:

71

72 6. OBJECTS

class AssAttr(Node):

def __init__(self, expr, attrname, flags):

self.expr = expr

self.attrname = attrname

self.flags = flags # ignore this

class Class(Node):

def __init__(self, name, bases, doc, code):

self.name = name

self.bases = bases

self.doc = doc # ignore this
self.code = code

class Getattr(Node):

def __init__(self, expr, attrname):

self.expr = expr

self.attrname = attrname

class If(Node):

def __init__(self, tests, else_):

self.tests = tests

self.else_ = else_

class While(Node):

def __init__(self, test, body, else_):

self.test = test

self.body = body

self.else_ = else_

FIGURE 2. The Python classes for P3 ASTs.

>>> print C.x

42

The body of a class may include arbitrary statements, including state-
ments that perform I/O. These statements are executed as the class
is created.

>>> class C:

... print 4 * 10 + 2

42

If a class attribute is a function, then accessing the attribute pro-
duces an unbound method.

>>> class C:

f = lambda o, dx: o.x + dx

6.2. SEMANTICS OF P3 73

>>> C.f

<unbound method C.<lambda>>

An unbound method is like a function except that the first argument
must be an instance of the class from which the method came. We’ll
talk more about instances and methods later.

Classes are first-class objects, and may be assigned to variables,
returned from functions, etc. The following if expression evaluates
to the class C, so the attribute reference evaluates to 42.

>>> class C:

... x = 42

>>> class D:

... x = 0

>>> print (C if True else D).x

42

6.2.1. Inheritance. A class may inherit from other classes. In the
following, class C inherits from classes A and B. When you reference
an attribute in a derived class, if the attribute is not in the derived
class, then the base classes are searched in depth-first, left-to-right
order. In the following, C.x resolves to A.x (and not B.x) whereas
C.y resolves to B.y.

>>> class A:

... x = 4

>>> class B:

... x = 0

... y = 2

>>> class C(A, B):

... z = 3

>>> print C.x * 10 + C.y

42

6.2.2. Objects. An object (or instance) is created by calling a class
as if it were a function.

o = C()

If the class has an attribute named __init__, then once the object is
allocated, the __init__ function is called with the object as it’s first
argument. If there were arguments in the call to the class, then these
arguments are also passed to the __init__ function.

74 6. OBJECTS

>>> class C:

... def __init__(o, n):

... print n

>>> o = C(42)

42

An instance may have associated data attributes, which are cre-
ated by assigning to the attribute. Data attributes are accessed with
the dot operator.

>>> o.x = 7

>>> print o.x

7

Different objects may have different values for the same attribute.

>>> p = C(42)

42

>>> p.x = 10

>>> print o.x, p.x

7, 10

Objects live on the heap and may be aliased (like lists and dictionar-
ies).

>>> print o is p

False

>>> q = o

>>> print q is o

True

>>> q.x = 1

>>> print o.x

1

A data attribute may be a function (because functions are first class).
Such a data attribute is not a method (the object is not passed as the
first parameter).

>>> o.f = lambda n: n * n

>>> o.f(3)

9

When the dot operator is applied to an object but the specified at-
tribute is not present in the object itself, the class of the object is
searched followed by the base classes in depth-first, left-to-right or-
der.

>>> class C:

... y = 3

6.2. SEMANTICS OF P3 75

>>> o = C()

>>> print o.y

3

If an attribute reference resolves to a function in the class or base
class of an object, then the result is a bound method.

>>> class C:

... def move(o,dx):

... o.x = o.x + dx

>>> o = C()

>>> o.move

<bound method C.move of <__main__.C instance at 0x11d3fd0>>

A bound method ties together the receiver object (o in the above ex-
ample) with the function from the class (move). A bound method can
be called like a function, where the receiver object is implicitly the
first argument and the arguments provided at the call are the rest of
the arguments.

>>> o.x = 40

>>> o.move(2)

>>> print o.x

42

Just like everything else in Python, bound methods are first class and
may be stored in lists, passed as arguments to functions, etc.

>>> mlist = [o.move,o.move,o.move]

>>> i = 0

>>> while i != 3:

... mlist[i](1)

... i = i + 1

>>> print o.x

45

You might wonder how the Python implementation knows whether
to make a normal function call or whether to perform a method call
(which requires passing the receiver object as the first argument).
The answer is that the implementation checks the type tag in the
operator to see whether it is a function or bound method and then
treats the two differently.

EXERCISE 6.1. Read:

(1) Section 9 of the Python Tutorial
(2) Python Language Reference, Section 3.2

http://docs.python.org/tut/node11.html
http://docs.python.org/ref/types.html

76 6. OBJECTS

Select
Instructions

Lex & Parse Python AST

Python File

x86 Assembly File

Flat Explicit
Python AST

Flatten
Expressions

Print x86

x86 IR
+ If + While

Explicate
Operations

Allocate
Registers

Explicit
Python AST

x86 IR
+ If + While

Remove Structured
Control Flow

x86 IR

Heapify
Variables

Closure
Conversion

Explicit
Python AST

Explicit
Python AST

Declassify Python AST

FIGURE 3. Structure of the compiler.

6.2.3. If and While Statements. This chapter we also add if and
while statements. For the if statement, you don’t need to support
elif and you can assume that every if has an else. For while state-
ments, you don’t need to support the else clause.

One of the more interesting aspects of extending your compiler
to handle While statements is that you’ll need to figure out how to
propagate the live-variable information through While statements in
the register allocation phase.

6.3. Compiling Classes and Objects

Figure 3 shows the structure of the compiler with the addition
of classes and objects. We insert a new pass at the beginning of the
compiler that lowers classes and objects to more primitive operations
and then we update the rest of the compiler to handle these new
primitives.

In addition to the new passes and primitives, the entities intro-
duced this week are all first-class, so the big pyobj union in runtime.h

has been extended.
class: The runtime representation for a class stores a list of

base classes and a dictionary of attributes.

6.3. COMPILING CLASSES AND OBJECTS 77

object: The runtime representation for an object stores its class
and a dictionary of attributes.

unbound method: The runtime representation of an unbound
method contains the underlying function and the class ob-
ject on which the attribute access was applied that created
the unbound method.

bound method: The runtime representation for a bound method
includes the function and the receiver object.

The following are the new functions in runtime.h for working
with classes, objects, bound methods, and unbound methods.

/∗ bases should be a list of classes ∗/
big_pyobj* create_class(pyobj bases);

big_pyobj* create_object(pyobj cl);

/∗ inherits returns true if class c1 inherits from class c2 ∗/
int inherits(pyobj c1, pyobj c2);

/∗ get class returns the class from an object or unbound method ∗/
big_pyobj* get_class(pyobj o);

/∗ get receiver returns the receiver from inside a bound method ∗/
big_pyobj* get_receiver(pyobj o);

/∗ get function returns the function from inside a method ∗/
big_pyobj* get_function(pyobj o);

int has_attr(pyobj o, char* attr);

pyobj get_attr(pyobj c, char* attr);

pyobj set_attr(pyobj obj, char* attr, pyobj val);

6.3.1. Compiling empty class definitions and class attributes.
Compiling full class definitions is somewhat involved, so I first rec-
ommend compiling empty class definitions. We begin with class def-
initions that have a trivial body.

>>> class C:

... 0

The class definition should be compiled into an assignment to a vari-
able named C. The right-hand-side of the assignment should be an
expression that allocates a class object with an empty hashtable for
attributes and an empty list of base classes. So, in general, the trans-
formation should be

class C:
0

=⇒
C = create_class()

where create class is a new C function in runtime.h.

78 6. OBJECTS

While a class with no attributes is useless in C++, in Python you
can add attributes to the class after the fact. For example, we can
proceed to write

>>> C.x = 3

>>> print C.x

3

An assignment such as C.x = 3 (the AssAttr node) should be trans-
formed into a call to set attr. In this example, we would have
set attr(C, "x", 3). Note that this requires adding support for
string constants to your intermediate language.

The attribute access C.x (the Getattr node) in the print state-
ment should be translated into a call to the get attr function in
runtime.h. In this case, we would have get attr(C, "x").

6.3.2. Compiling class definitions. A class body may contain an
arbitrary sequence of statements, and some of those statements (as-
signments and function definitions) add attributes to the class object.
Consider the following example.

class C:

x = 3

if True:

def foo(self, y):

w = 3

return y + w

z = x + 9

else:

def foo(self, y):

return self.x + y

print ’hello world!\n’

This class definition creates a class object with three attributes: x,
foo, and z, and prints out hello world!.

The main trick to compiling the body of a class is to replace as-
signments and function definitions so that they refer to attributes in
the class. The replacement needs to go inside compound statements
such as If and While, but not inside function bodies, as those assign-
ments correspond to local variables of the function. One can imagine
transforming the above code to something like the following:

class C:

pass

C.x = 3

if True:

def __foo(self, y):

6.3. COMPILING CLASSES AND OBJECTS 79

w = 3

return y + w

C.foo = __foo

C.z = C.x + 9

else:

def __foo(self, y):

return self.x + y

C.foo = __foo

print ’hello world!\n’

Once the code is transformed as above, the rest of the compilation
passes can be applied to it as usual.

In general, the translation for class definitions is as follows.

class C(B1, . . . , Bn):

body
=⇒
tmp = create_class([B1, . . . , Bn])

newbody
C = tmp

Instead of assigning the class to variable C, we instead assign it to a
unique temporary variable and then assign it to C after the newbody .
The reason for this is that the scope of the class name C does not
include the body of the class.

The body is translated to newbody by recursively applying the fol-
lowing transformations. You will need to know which variables are
assigned to (which variables are class attributes), so before trans-
forming the body , first find all the variables assigned-to in the body
(but not assigned to inside functions in the body).

The translation for assignments is:

x = e
=⇒
set_attr(tmp, "x", e′)

where e′ is the recursively processed version of e.
The translation for variables is somewhat subtle. If the variable

is one of the variables assigned somewhere in the body of this class,
and if the variable is also in scope immediately outside the class,
then translate the variable into a conditional expression that either
does an attribute access or a variable access depending on whether
the attribute is actually present in the class value.

x
=⇒
get_attr(tmp, "x") if has_attr(tmp, "x") else x

80 6. OBJECTS

If the variable is assigned in the body of this class but is not in scope
outside the class, then just translate the variable to an attribute ac-
cess.
x
=⇒
get_attr(tmp, "x")

If the variable is not assigned in the body of this class, then leave it
as a variable.
x
=⇒
x

The translation for function definitions is:
def f(e1,. . .,en):

body
=⇒
def f_tmp(e1,. . .,en):

body # the body is unchanged, class attributes are not in scope here
set_attr(tmp, "f", f_tmp)

6.3.3. Compiling objects. The first step in compiling objects is
to implement object construction, which in Python is provided by
invoking a class as if it were a function. For example, the following
creates an instance of the C class.

C()

In the AST, this is just represented as a function call (CallFunc) node.
Furthermore, in general, at the call site you won’t know at compile-
time that the operator is a class object. For example, the following
program might create an instance of class C or it might call the func-
tion foo.

def foo():

print ’hello world\n’

(C if input() else foo)()

This can be handled with a small change to how you compile func-
tion calls. You will need to add a conditional expression that checks
whether the operator is a class object or a function. If it is a class ob-
ject, you need to allocate an instance of the class. If the class defines
an __init__ method, the method should be called immediately after
the object is allocated. If the operator is not a class, then perform a
function call.

6.3. COMPILING CLASSES AND OBJECTS 81

In the following we describe the translation of function calls. The
Python IfExp is normally written as e1 if e0 else e2 where e0 is the
condition, e1 is evaluated if e0 is true, and e2 is evaluated if e0 is false.
I’ll instead use the following textual representation:

if e0 then e1 else e2

In general, function calls can now be compiled like this:

e0(e1,. . .,en)
=⇒
let f = e0 in

let a1 = e1 in
...

let an = en in

if is_class(f) then

let o = create_object(f) in

if has_attr(f, ’__init__’) then

let ini = get_function(get_attr(f, ’__init__’)) in

let _ = ini(o, a1,. . .,an) in

o
else o

else

f(a1,. . .,an) # normal function call

The next step is to add support for creating and accessing at-
tributes of an object. Consider the following example.

o = C()

o.w = 42

print o.w

print o.x # attribute from the class C

An assignment to an attribute should be translated to a call to
set attr and accessing an attribute should be translated to a call to
get attr.

6.3.4. Compiling bound and unbound method calls. A call to
a bound or unbound method also shows up as a function call node
(CallFunc) in the AST, so we now have four things that can hap-
pen at a function call (we already had object construction and nor-
mal function calls). To handle bound and unbound methods, we
just need to add more conditions to check whether the operator is a
bound or unbound method. In the case of an unbound method, you
should call the underlying function from inside the method. In the
case of a bound method, you call the underlying function, passing

82 6. OBJECTS

the receiver object (obtained from inside the bound method) as the
first argument followed by the normal arguments. The suggested
translation for function calls is given below.
e0(e1,. . .,en)
=⇒
let f = e0 in

let a1 = e1 in
...

let an = en in

if is_class(f) then

let o = create_object(f) in

if has_attr(f, ’__init__’) then

let ini = get_function(get_attr(f, ’__init__’)) in

let _ = ini(o, a1,. . .,an) in

o
else o

else

if is_bound_method(f) then

get_function(f)(get_receiver(f), a1,. . .,an)
else

if is_unbound_method(f) then

get_function(f)(a1,. . .,an)
else

f(a1,. . .,an) # normal function call

EXERCISE 6.2. Extend your compiler to handle P3. You do not
need to implement operator overloading for objects or any of the
special attributes or methods such as __dict__.

Appendix

6.4. x86 Instruction Reference

Table 1 lists some x86 instructions and what they do. Address
offsets are given in bytes. The instruction arguments A,B,C can be
immediate constants (such as $4), registers (such as %eax), or mem-
ory references (such as −4(%ebp)). Most x86 instructions only allow
at most one memory reference per instruction. Other operands must
be immediates or registers.

83

84 APPENDIX

Instruction Operation
addl A, B A+B → B
call L Pushes the return address and jumps to label L
call *A Calls the function at the address A.
cmpl A, B compare A and B and set flag
je L If the flag is set to “equal”, jump to label L
jmp L Jump to label L
leave ebp→ esp; popl %ebp

movl A, B A→ B
movzbl A, B A→ B

where A is a single-byte register (e.g., al or cl), B is a four-byte register,
and the extra bytes of B are set to zero

negl A −A→ A
notl A ∼ A→ A (bitwise complement)
orl A, B A|B → B (bitwise-or)
andl A, B A&B → B (bitwise-and)
popl A ∗esp→ A; esp + 4→ esp

pushl A esp− 4→ esp;A→ ∗esp
ret Pops the return address and jumps to it
sall A, B B << A→ B (where A is a constant)
sarl A, B B >> A→ B (where A is a constant)
sete A If the flag is set to “equal”, then 1→ A, else 0→ A.

A must be a single byte register (e.g., al or cl).
setne A If the flag is set to “not equal”, then 1→ A, else 0→ A.

A must be a single byte register (e.g., al or cl).
subl A, B B − A→ B

TABLE 1. Some x86 instructions. We write A → B to
mean that the value of A is written into location B.

Bibliography

[1] V. K. Balakrishnan. Introductory Discrete Mathematics. Dover Publications, In-
corporated, 1996.

[2] D. Beazley. PLY (Python Lex-Yacc). http://www.dabeaz.com/ply/.
[3] D. Brélaz. New methods to color the vertices of a graph. Commun. ACM,

22(4):251–256, 1979.
[4] P. Briggs. Register Allocation via Graph Coloring. PhD thesis, Rice University,

1992.
[5] G. J. Chaitin. Register allocation & spilling via graph coloring. In SIGPLAN

’82: Proceedings of the 1982 SIGPLAN Symposium on Compiler Construction,
pages 98–105. ACM Press, 1982.

[6] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[7] A. H. Gebremedhin. Parallel Graph Coloring. PhD thesis, University of Bergen,
1999.

[8] S. Hack and G. Goos. Optimal register allocation for ssa-form programs in
polynomial time. Information Processing Letters, 98(4):150 – 155, 2006.

[9] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 1: Ba-
sic Architecture, November 2006.

[10] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 2A:
Instruction Set Reference, A-M, November 2006.

[11] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 2B:
Instruction Set Reference, N-Z, November 2006.

[12] S. C. Johnson. Yacc: Yet another compiler-compiler. In UNIX Programmer’s
Manual, volume 2, pages 353–387. Holt, Rinehart, and Winston, 1979.

[13] B. W. Kernighan and D. M. Ritchie. The C programming language. Prentice Hall
Press, Upper Saddle River, NJ, USA, 1988.

[14] M. E. Lesk and E. Schmidt. Lex - a lexical analyzer generator. Technical report,
Bell Laboratories, July 1975.

[15] H. A. Omari, K. E. nbsp;Sabri Hussein A. Omari, K. E. nbsp;Sabri Hussein
A. Omari, K. E. nbsp;Sabri Hussein A. Omari, and K. E. Sabri. New graph
coloring algorithms. Journal of Mathematics and Statistics, 2(4), 2006.

[16] J. Palsberg. Register allocation via coloring of chordal graphs. In CATS ’07:
Proceedings of the thirteenth Australasian symposium on Theory of computing,
pages 3–3, Darlinghurst, Australia, Australia, 2007. Australian Computer So-
ciety, Inc.

[17] K. H. Rosen. Discrete Mathematics and Its Applications. McGraw-Hill Higher
Education, 2002.

85

http://www.dabeaz.com/ply/

86 BIBLIOGRAPHY

[18] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordal-
ity of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic
hypergraphs. SIAM Journal on Computing, 13(3):566–579, 1984.

[19] G. van Rossum. Python Library Reference. Python Software Foundation, 2.5
edition, September 2006.

[20] G. van Rossum. Python Reference Manual. Python Software Foundation, 2.5
edition, September 2006.

[21] G. van Rossum. Python Tutorial. Python Software Foundation, 2.5 edition,
September 2006.

[22] O. Waddell and R. K. Dybig. Fast and effective procedure inlining. In Proceed-
ings of the 4th International Symposium on Static Analysis, SAS ’97, pages 35–52,
London, UK, 1997. Springer-Verlag.

	Chapter 1. Integers and variables
	1.1. ASTs and the P0 subset of Python
	1.2. Understand the meaning of P0
	1.3. Write recursive functions
	1.4. Learn the x86 assembly language
	1.5. Flatten expressions
	1.6. Select instructions

	Chapter 2. Parsing
	2.1. Lexical analysis
	2.2. Background on CFGs and the P0 grammar.
	2.3. Generating parsers with PLY
	2.4. The LALR(1) algorithm
	2.4.1. Parse table generation
	2.4.2. Resolving conflicts with precedence declarations

	Chapter 3. Register allocation
	3.1. Liveness analysis
	3.2. Building the interference graph
	3.3. Color the interference graph by playing Sudoku
	3.4. Generate spill code
	3.5. Assign homes and remove trivial moves
	3.6. Read more about register allocation

	Chapter 4. Data types and polymorphism
	4.1. Syntax of P1
	4.2. Semantics of P1
	4.3. New Python AST classes
	4.4. Compiling polymorphism
	4.5. The explicate pass
	4.6. Type checking the explicit AST
	4.7. Update expression flattening
	4.8. Update instruction selection
	4.9. Update register allocation
	4.10. Removing structured control flow
	4.11. Updates to print x86

	Chapter 5. Functions
	5.1. Syntax of P2
	5.2. Semantics of P2
	5.3. Overview of closure conversion
	5.4. Overview of heapifying variables
	5.4.1. Discussion

	5.5. Compiler implementation
	5.5.1. The Uniquify Variables Pass
	5.5.2. The Explicate Operations Pass
	5.5.3. The Heapify Variables Pass
	5.5.4. The Closure Conversion Pass
	5.5.5. The Flatten Expressions Pass
	5.5.6. The Select Instructions Pass
	5.5.7. The Register Allocation Pass
	5.5.8. The Print x86 Pass

	Chapter 6. Objects
	6.1. Syntax of P3
	6.2. Semantics of P3
	6.2.1. Inheritance
	6.2.2. Objects
	6.2.3. If and While Statements

	6.3. Compiling Classes and Objects
	6.3.1. Compiling empty class definitions and class attributes
	6.3.2. Compiling class definitions
	6.3.3. Compiling objects
	6.3.4. Compiling bound and unbound method calls

	Appendix
	6.4. x86 Instruction Reference

	Bibliography

